Search

Published After
Published Before

Search Results

  • Relation of sour cherry blooming dynamics and meteorological variables
    17-23.
    Views:
    212

    The aim of our research was to identify the role of weather parameters in the development of the start date and length of blooming. In order to achieve this, we examined how meteorological conditions of a particular year influence the start date and length of blooming in different years (dry, wet, cool, hot, sunny, cloudy). The meteorological parameters were the following: maximum temperature, minimum temperature, average temperature, precipitation, length of sunlight, difference of daytime and nightime temperatures, potential evaporation-PET, Huglin-index,Winkler-index, climatic water balance which can be calculated as a difference of precipitation and potential evaporation. In this study we wanted to find out whether early start of blooming results in a longer blooming period or if there is a generally faster blooming period when blooming starts later. Based on the results we can say that early start of blooming resulted in extended blooming period for three sour cherry varieties at the examined production sites. The start of blooming showed the closest relation with the difference of average daytime and nightime temperatures of the 30-day period prior to blooming. Significant relation was also detected with the thermic indexes as well as with maximum temperatures, climatic water balance and the degree of potential evaporation.We examined how weather 30 days prior and during blooming influenced the length of phases. Results showed that precipitation prior and during blooming is in significant relation with the length of blooming. We detected significant relation between daytime and nightime temperature differences and the length of blooming. The nature of the relation indicates that blooming periods were shorter in case of increasing temperature differences.We found that shorter blooming lengths occurred when maximum temperatures averaged between 13.5–14.5 ºC 30 days prior to blooming when examining the relation between blooming length and maximum temperature. If the average of maximum temperatures was below 13 ºC or exceeded 15 ºC during this period, then we could calculate with a blooming period longer than ten days. We proved that little precipitation and high temperature accelerates physiological processes, therefore we could calculate with an accelerated blooming and shorter blooming period.

  • Relationship beetwen the phenological features of pear cultivars and the main meteorological parameters in a gene bank with 555 pear
    59-63.
    Views:
    171

    The trees observed are grown at Ujfehert6, Eastern Hungary in a gene bank with 555 pear cultivars. Each of the cultivars was monitored for its dates of: the beginning of bloom, main bloom and the end of bloom and ripe phenophasis separately between I 984 and 2002. We analyzed the statistical features, frequency, distribution of these phenophasis and its' correlation the meteorological variables bet ween the interval. During this period the meteorological database recorded the following variables: daily mean temperature (°C), daily maximum temperature (0C), daily mini m um temperature (0C), daily precipitation (mm), daily hours of bright sunshine, daily means or the differences between the day-time and night-time temperatures (0C). For the analysis of data the cultivars have been grouped according to dates of maturity, blooming period as well as types of the seasons. Groups of maturity dates: summer ripe, autumnal ripening, winter ripe cultivars. Groups of blooming dates: early blooming, intermediate blooming, late blooming cultivars. At all the separated groups we analyzed the relationship between phenophasis and meteorological variables. During the 18 years of observation , the early blooming cultivars started blooming on 10-21 April, those of intermediate bloom date started flowering bet ween 20 April and 3 May, whereas the late blooming group started on 2- 10 May. Among the meteorological variables of the former autumn and winter periods, the winter maxima were the most active factor influencing the start dates of bloom in the subsequent spring. For the research of fruit growing-weather relationships we used simple, well known statistical methods, correlation and regression analysis. We used the SPSS 1 1.0 software for the linear regression fitting and for calculation of dispersions as well. The 1ables made by Excel programme.

  • Cooling irrigation as a powerful method for microclimate modification in apple plantation
    33-37.
    Views:
    244

    Irrigation in some countries is a horticultural practice mainly used only to supply water. At the same time the use of microsprinklers have a powerful influence on the changes of temperature in orchards. When the air’s temperature is high (about 20 °C or higher) the evaporative cooling irrigation significantly decreases the plants’ surface temperature and air temperature. The cooling effect is stronger when the air is dryer. By using cooling irrigation regularly, canopy temperature can be decreased so that the beginning of blooming can be delayed. Also if the blooming is early and frost probability is high, serious damages can happen in orchards. The beneficial effect of cooling irrigation is the temperature reduction and frost protection. InMarch 2010, one month earlier than the expected blooming an irrigation system was established to produce anti-frost treatment and regulate the micro-climate of a Gala apple orchard which belongs to the University of Debrecen (Hungary). The objective of sprinklers was to cool the air by increasing water evaporation and relative humidity. The position of the micro-sprinklers was planned in three levels (around the tree trunks, a few cm near to the soil surface, in the crown region and above the crown, a half meter higher). The results showed that the water sprayed in the orchard by micro-jets influenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect. When water was applied at intervals of 15 minutes for ten times a day from 8 am to 18 pm, the air, flowers and bud’s surface temperature could be kept low.At certain days when the temperature was higher than 10 °C, irrigation was used at night time in similar 15 minutes intervals, from 18 pm and 6 am. The beginning of bloom could be delayed for more than ten days. The Gala apple variety blooming dynamics was characterized by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control one in spite of the equal temperatures measured in the plots. Under Hungarian climatic conditions, the method was successfully used to delay blooming dates. The main result was the diminution of the frost damage in the spring that assured apple yields.

  • Effect of over tree cooling irrigation on ‘Bosc’ pear orchards microclimate
    153-156.
    Views:
    206

    Irrigation in some countries is a horticultural practice mainly used only to supply water. At the same time the use of microsprinklers have a powerful infl uence on the changes of temperature in orchards. When the air’s temperature is high (about 20 °C or higher) the evaporative cooling irrigation signifi cantly decreases the plants’ surface temperature and air temperature. The cooling effect is stronger when the air is dryer. By using cooling irrigation regularly, canopy temperature can be decreased so that the beginning of blooming can be delayed. Also if the blooming is early and frost probability is high, serious damages can happen in orchards. The benefi cial effect of cooling irrigation is the temperature reduction and frost protection. In March 2010, one month earlier than the expected blooming an irrigation system was established to produce anti-frost treatment and regulate the micro-climate of a Bosc pear orchard which belongs to the University of Debrecen (Hungary). The objective of sprinklers was to cool the air by increasing water evaporation and relative humidity. The position of the micro-sprinklers was planned in three levels (around the tree trunks, a few cm near to the soil surface, in the crown region and above the crown, a half meter higher). The results showed that the water sprayed in the orchard by micro-jets infl uenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect. When water was applied at intervals of 15 minutes for ten times a day from 8 am to 18 pm, the air, fl owers and bud’s surface temperature could be kept low. At certain days when the temperature was higher than 10 °C, irrigation was used at night time in similar 15 minutes intervals, from 18 pm and 6 am. The beginning of bloom could be delayed for more than ten days. The Bosc pear variety blooming dynamics was characterized by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control one in spite of the equal temperatures measured in the plots. Under Hungarian climatic conditions, the method was successfully used to delay blooming dates. The main result was the diminution of the frost damage in the spring that assured pears yields.

  • Effects of weather characteristics on blooming dates in an apple gene bank plantation between 1984 and 2001
    37-44.
    Views:
    198

    The aims of this paper was to investigate the flowering characteristic of apples and their relationship to meteorological parameters. The trees observed are grown at Ujfehert6, Eastern Hungary in the plantation of an assortment (gene bank) with 586 apple varieties. Each of the varieties were observed as for their dates of subsequent phenophases, the beginning of bloom, main bloom and the end of bloom over a period between 1984 and 2001. During this period the meteorological data-base keeps the following variables: daily means of temperature (°C), daily maximum temperature (°C), daily minimum temperature (°C), daily precipitation sums (mm), daily sums of sunny hours, daily means of the differences between the day-time and night-time temperatures (°C), average differences between temperatures of successive daily means (°C). Between the 90th and 147th day of the year over the 18 years of observation. The early blooming varieties start blooming at 10-21 April. The varieties of intermediate bloom start at the interval 20 April to 3 May, whereas the late blooming group start at 2-10 May. Among the meteorological variables of the former autumnal and hibernal periods, the hibernal maxima were the most active factor influencing the start of bloom in the subsequent spring.

  • The effect of cooling irrigation on the blooming dynamic of plum
    57-59.
    Views:
    211

    The objective of the present study is to explore the effect of cooling irrigation (aspersion) on the beginning of bloom and on the micro-climate of the plantation. The results show that the water sprayed in the orchard by micro-jet influenced decisively the temperature of the plantation. At higher temperatures (around 20 °C), the drop of temperature may attain 5–7 °C. A low relative humidity of the air may increase the relative effect, The frequent repetition (20 minute intervals) may keep the temperature low also in the buds. The beginning of bloom may delayed for more than ten days. The dynamics of blooming was characterised by a logistic curve in the treated as well as in the control plot. In the treated plot, the curve was steeper than in the control in spite of equal temperatures measured in the plots. Under our (Hungarian) climatic conditions, the method is successfully used to delay blooming dates. The main result is the diminution of the frost damage in the spring and the security of yield. The costs and water requirement should be calculated later.

  • Variation between some apricot varieties in regard to flowering phenology in Boldogkôváralja, Hungary
    7-9.
    Views:
    298

    The aim of this study was the estimation of blossoming of 14 apricot cultivars in Boldogkôváralja in 2009, 2010 and 2011 seasons. And this will help growers to select appropriate varieties to their weather conditions. For this target the blooming period of 19 apricot varieties of different origin was observed in three subsequent years. There was no large difference in the beginning of blooming in the different years, and the greatest variation between the start date of flowering was about 1 to 3 days as the place of experiment site near to northern border and also, length of flowering period of apricot trees is also inversely related to date when blooming started. The little differences in flowering dates and flowering periods due to the high temperature through the three seasons of study.

  • Relationship between several meteorological factors and phenological features of pear cultivars
    67-73.
    Views:
    198

    The aim of this paper was to investigate the fl owering characteristic of apples and their relationship to meteorological parameters. The trees observed are grown at Újfehértó, Eastern Hungary in the plantation of an assortment (gene bank) with 586 apple varieties. Each of the varieties were observed as for their dates of subsequent phenophases, the beginning of bloom, main bloom and the end of bloom over a period between 1984 and 2001 during this period the meteorological data-base keeps the following variables: daily means of temperature (°C), daily maximum temperature (°C), daily minimum temperature (°C), daily precipitation sums (mm), daily sums of sunny hours, daily means of the differences between the day-time and night-time temperatures (°C), average differences between temperatures of successive daily means (°C). Between the 90th and 147th day of the year over the 18 years of observation. The early blooming varieties start blooming at 10–21April. The varieties of intermediate bloom start at the interval 20 April to 3 May, whereas the late blooming group start at 2–10 May. Among the meteorological variables of the former autumnal and hibernal periods, the hibernal maxima were the most active factor infl uencing the start of bloom in the subsequent spring.

  • Relationship between several meteorological factors and phenological features of apple cultivars
    13-19.
    Views:
    202

    The trees observed are grown at Ofeherto, Eastern Hungary in the plantation of an assortment (gene bank) with 586 apple cultivars. Each of the cultivars were observed as for their dates of subsequent phenophases, the beginning of bloom, main bloom and the end of bloom over a period between 1984 and 2001. during this period the meteorological data-base keeps the following variables: daily means of temperature (°C), daily maximum temperature (°C), daily minimum temperature (°C), daily precipitation sums (mm), daily sums of sunny hours, daily means of the differences between the day-time and night-time temperatures (°C), average differences between temperatures of successive daily means (°C). Between the 90th and 147th day of the year over the 18 years of observation. The early blooming cultivars start blooming at 10-21April. The cultivars of intermediate bloom start at the interval 20 April to 3 May, whereas the late blooming group start at 2-10 May. Among the meteorological variables of the former autumnal and hibernal periods, the hibernal maxima were the most active factor influencing the start of bloom in the subsequent spring.

  • Flower bud differentiation in apricot
    19-21.
    Views:
    197

    The flower bud development is an especially complex process from initiation to blooming. Our main objective was to analyze paradormancy; the first stage of this process in our collection of varieties in the vicinity of Budapest, in Hungary. We have analyzed three varieties with different winter hardiness. `Ceglédi bíborkajszi' is one of the most frost susceptible in our collection of varieties, when the flower bud differentiation started in early August, and all flower organ initials evolved in beginning of September. The flower bud differentiation of the most winter hardy variety, `Rózsakajszi C.1406' started in the end of August, and all flower organs were noticed at middle of September. `Gönci magyar kajszi' is a medium frost hardiness apricot variety, its phenological process composes transition between two mentioned above varieties.

  • Overwintering capability and spring population size of honeybee colonies (Apis mellifera L.) in Hungary
    153-156.
    Views:
    107

    Honeybee races and ecotypes of different genetic background have different population development in spring. Some of them can reach the necessary population size by the beginning of Robinia pseudoacacia (black locust) blooming period. There were significant differences in the spring population development between the colonies of different genetic background. The Italian races (A. m. ligustica) and their cross-breeds over-wintered poorly in Hungary, their spring population was low and they collected small amount of Robinia honey. The Austrian improved Carniolan (A. m. carnica) colonies over-wintered well, they had the largest spring population in both years. There was no significant difference between the size of the spring population of the same colonies of different genetic background in 1995 and 1996. The rate of the population development of the colonies was different in the two examined years. There was strong correlation (r = 0.8) between the spring population size and the Robinia honey yield, and between the mid-April population size and the Robinia honey yield of the colony groups of different genetic background. Spring population size also important in the effective pollination of fruit tree species that bloom earlier than the black locust trees.

     

  • Seasonality of weather and phenology of reproductive organs of flower of sour cherry cultivars in Hungarian climatic conditions
    75-80.
    Views:
    192

    Sour cherry (Prunus cerasus L.) is one of the most important fruit crop grown in Hungary, The flowering phenology and pollen shedding/stigma viability ratio, in an effort to elucidate the reproductive phenology of nine economically important sour cherry cultivars (Érdi bőtermő, Debreceni bőtermő, Csengődi, Kántorjánosi 3. Pándy 279. Úfehértói fürtös, Petri, Éva, and Oblacsinszka) all widespread in the Hungary, was studied at Újfehertó climatic condition. The main aims were to investigate how possible environmental cues influence timing and development of phenophases and whether different cultivars have different seasonal responses to these cues. Likely effects of climatic changes on phenological development patterns were also considered. Our results revealed important aspects of the reproductive biology of sour cherry flowers. The amplitude of the phenophase "beginning of blossoming" between cultivars did not exceed 6 days. There is maximum 3 days difference in blooming length of different direction in each cultivar. Pándy 279 showed high variability when the position of flowers changed on the tree shoots. Újfehértói fürtös was stable in all four directions of tree. The pollen shedding period and stigma viability ratio was well synchronous. Pollen shedding phenomenon occurred in the range limitation of secretary activity of stigmas in all five cultivars. Distribution of pollen shedding over the secretary activity of stigmas is almost good. In all five cultivars maximum pollen shedding occurred about the high temperature part of the day.