Search

Published After
Published Before

Search Results

  • Temporal changes of the frequency of spring frost damages in the main fruit growing regions in Western Hungary and in East Hungary
    81-87.
    Views:
    218

    Most of the risk in Hungarian fruit growing is the damage caused by late spring frosts. The frequency of late frosts seems to increase nowadays. The aim of the study was to check this contention: what is the real probability of the damages. Based on earlier experiences, the physiological LT50 function has been elaborated for new fruit varieties, which are eligible to moderate the danger when being threatened by frost. By means of this technique, the probability of freezing is distinguished between frost susceptible, frost resistant and medium frost resistant fruit species and varieties around their blooming time. The degree of frost damage depends on the duration and severity of the low temperature and not at least on the frost tolerance of the plant. For that purpose, the frequencies of frost damages were studied at two Transdanubian and two Trans-Tisza fruit growing sites by means of a meteorological database for the 60-year-long period 1951–2010. Being aware of the LT50 values changing during the phonological phases of the fruit trees from budding, bloom, fruit set and fruit growth, the number and date of critical (frosty) days could be settled. An important role is attributed to the orographic relief and the height above the sea level of the site, as 20–30 m differences and expositions may become decisive within the same plantation. The spatial distribution of damages is also dependent on the air circulations within the Carpathian basin. At the southern and northern borders of the country, especially valley bottoms represent additional risks of frost. Most spring frost damages are experienced in April 20–22, and cause heavy damages by temperature minima between – 3°C and – 6°C. The severity of damage depends largely on the temperature of the preceding few days. The earlier bloom the heavier damage is expected. The study is emphasising the importance of the varieties. Frost tolerance of some varieties may lower the risk of spring frosts by 40–50%, as experienced on the plantations. The quantifi cation of the risks based on data raised during the last years will be suitable to defi ne the security of yields of each growing site successfully.

  • Role of hydrogen peroxide and Pharmaplant-turbo against cucumber powdery mildew fungus under organic and inorganic production
    39-44.
    Views:
    405

    Cucumber leaves have been sprayed with a solution of hydrogen peroxide (H202) or Pharmaplant-turbo combined with organic or inorganic fertilizers under plasic house. Under the influence of H202, leaves exhibited resistant against Podoshaera fusca fungus, the causal agent of cucumber powdery mildew. H202 (15 mM) was able to decrease the disease severity from 90.4% to 12% in two experiments conducted in two seasons. Pharmaplant-turbo (Turbo) is new chemical compound and used as an antifungal compound. Turbo in 1 ml/L was able to decrease the disease severity from 90.4% to 11.5% in the both experiments as well. Both of H202 and Turbo were combined with organic treatment (compost + compost tea + seaweed extracts) which showed significant effect against cucumber powdery mildew fungus and strongly suppressed it as compared to control leaves. Organic treatment produced higher vegetative growth characters and greater early and total yields as compared to inorganic treatment, also organic fruits produced the lower nitrate content and the higher ascorbic acid content as compared to inorganic fruits. Our study have indicated that, H202 and Turbo combined with organic fertilizers play a role in the resistance of cucumber against powdery mildew by decreasing the disease severity. We suggest to give more attention to the direct application of H202 in low concentration and Turbo against powdery mildew diseases and other plant diseases.

  • Viniculture in the Semi-arid Tropical Region of Brazil
    115-118.
    Views:
    102

    In the semi-arid tropics viticulture was successful according to technologies developed by Hungarian expertise