Articles

A preliminary study on some features of two new resistant apple cultivars in a multi-row planting system

Published:
December 19, 2019
Authors
View
Keywords
License

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Csihon, Á., Gonda, I., Vámos, P., Barna, D., & Holb, I. J. (2019). A preliminary study on some features of two new resistant apple cultivars in a multi-row planting system. International Journal of Horticultural Science, 25(3-4), 11-14. https://doi.org/10.31421/IJHS/25/3-4/3929
Abstract

The aim of this work was to report preliminary results on some features of two new resistant apple cultivars (cvs. ‘Galiwa’ and ‘Story Inored’) in multi-row system in the early bearing years of the orchard. Trees were planted in spring of 2015 in double row design (3.5 m+1.4 m x 1.0 m) with planting density of 5357 tree/ha. According to our results cv. ‘Story Inored’ presented more vigorous growth, than cv. ‘Galiwa’. Trees of cv. ‘Story Inored’ reached 2.7 m in the third year, but cv. ‘Galiwa’ could reach only 1.95 meter. Due to late spring frost 100% yield loss was observed in the second year. In 2017 cv. ‘Galiwa’ produced 5.3 kg/tree (25 fruit/tree), while cv. ‘Story Inored’ presented 7.7 kg/tree (50 fruit/tree). Average yield was 28.4 t/ha for cv. ‘Galiwa’, as ‘Story Inored’ reached 41.3 t/ha in the third year. Cultivar ‘Galiwa’ reached the required fruit size (79.1 mm), but its coloration was weaker (43% fruit surface color). Cultivar ‘Story Inored’ can be described with smaller fruit size (69 mm) and higher percentage of surface color (93%).

References
  1. Csihon, Á., Holb, I., Gonda, I. (2015): Evaluation of generative accomplishment of new apple cultivars in Hungary. International Journal of Horticultural Science 21(1-2): 11-15. https://doi.org/10.31421/IJHS/21/1-2./1151
  2. Csihon, Á., Gonda, I. (2016): Fruit coloration of apple cultivars. International Journal of Horticultural Science 22(1-2): 11-14. https://doi.org/10.31421/IJHS/22/1-2./1176
  3. Earles, R., Ames, G., Balasubrahmanyam, R., Born, H. (1999): Organic and low-spray apple production. Appropriate Technology Transfer for Rural Areas. 1-38. p.
  4. Fischer C., Fischer M. (1996): Results in apple breeding at Dresden-Pillnitz. Gartenbauwissenschaft, 61. 139–146.
  5. Fischer, M., Fischer, C. (2004): Genetic resources as basis for new resistant apple cultivars. Journal of Fruit and Ornamental Plant Research. Special ed. 12: 64-76.
  6. Gonda, I. (1995): Kiút a válságból. Intenzív almatermesztés. PRIMOM Kiadó, Nyíregyháza. Kézikönyv. ISBN: 963-003-342-9.
  7. Guerra, W. (2007): Consigliati quattro mutanti di Gala. Frutta e Vite 6: 196-199.
  8. Holb, I. J. (2000): Disease progress of apple scab caused by Venturia inaequalis in environmentally friendly growing systems. International Journal of Horticultural Science 6(4): 56-62. https://doi.org/10.31421/IJHS/6/4/225
  9. Holb, I. J. (2008): Brown rot blossom blight of pome and stone fruits: symptom, disease cycle, host resistance, and biological control. International Journal of Horticultural Science. 14(3): 15-21. https://doi.org/10.31421/IJHS/14/3/796
  10. Holb, I. J. (2009): Fungal disease management in environmentally friendly apple production. In: Eric Lichtfouse (ed.) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms: Sustainable Agriculture Reviews 2. Dordrecht: Springer Science+Business Media B.V., 219-293.
  11. Holb, I. J., Heijne, B., Jeger M. J. (2006): Effects of a combined sanitation treatment on earthworm populations, leaf litter density and infection by in integrated apple orchards. Agriculture Ecosystems & Environment 114: 287–295. https:// doi.org/10.1016/j.agee.2005.11.021
  12. Lepsis, J., Blanke M. (2001): Lichtausnutzung und Stammquerschnitt als Maβstäbe fűr die prognostische Bewertung von Pflanzsystemen bei Apfel. Erwerbsobstbau 43: 142150.
  13. Meland, M., Hovland, O. (1997): High density planting systems in ’Summerred’ apples in a northern climate. Acta Horticulturae. 451: 461-472. https://doi.org/10.17660/ ActaHortic.1997.451.53
  14. Mika, A., Krawiec, A., Krezewinska, D. (1997): Results of planting systems and density trials with dwarf and semi-dwarf apple trees grafted on Malling (M) and Polish (P) rootstocks. Acta Horticulturae. 451: 479-486.
  15. Porpáczy, A., Faragó, M., Garay, A., G. Szilvay, M., Kollányi, L., Sági, F., Simon, I., Szilágyi, K., Zatykó, J. (1964): A korszerű gyümölcstermelés elméleti kérdései. Mezőgazdasági Kiadó, Budapest. 647. pp.
  16. Robinson, T. L., Lasko, A. N., Ren, Z. (1991): Modifying apple tree canopies for improved production efficiency. HortScience 26: 1005-1012. https://doi.org/10.21273/ HORTSCI.26.8.1005
  17. Saure, M. C. (1990): External control of anthocyanin formation in apple: a review. Scientia Horticulture 42: 181-218.
  18. Soltész, M., Szabó, Z., Nyéki, J. (2000): Training systems of fruit trees in Hungary. International Journal of Horticultural Science 6(1): 123-127. https://doi.org/10.31421/IJHS/6/1/82
  19. Tomcsányi, P. (1973): Piacos kertészet. Mezőgazdasági Kiadó, Budapest. 632. pp.
  20. Wertheim, S. J., Wagenmakers, P. S., Bootsma, J. H., Groot, M. J. (2001): Orchard systems for apple and pear: condition for success. Acta Horticulturae. 557: 209-227. https://doi.org/10.17660/ActaHortic.2001.557.28