Influence of antibiotics on NAA-induced somatic embryogenesis in eggplant (Solanum melongena L. cv. Embú)

Picoli, E. A. T.; Otoni, W. C.; Cecon, P. R.; and Fári, M.

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000, Viçosa, MG, Brazil; e-mail: wotoni@mail.ufv.br (E. T. Picoli)
Fax: +55 31 899 2580
Departamento de Informática, Universidade Federal de Viçosa, MG, Brazil
Agricultural Biotechnology Center (ABC), Gödöllö, Szent-Györgyi A. u. 4, H-2100, Hungary; Consultant, Codevasf/Embrapa/Agroinvest, Embrapa Semi-Arido (CPATSA), Br 428, Km 152, Zona Rural, Petrolina-PE, Brazil

Key words: Antibiotics, Solanum melongena, Somatic embryogenesis, Ticarcillin/potassium clavulanate

Abbreviations: GA3 Gibberellic acid MS Murashige & Skoog NAA α-Naphtaleneacetic acid

Summary: The influence of increasing concentrations of naphthaleneacetic acid and the antibiotics cefotaxime, timentin, kanamycin, and hygromycin on eggplant (Solanum melongena L. cv. Embú) somatic embryogenesis was investigated. Cotyledon explants were excised from 16 to 20 days old in vitro grown seedlings. NAA promoted somatic embryogenesis, although its concentrations had no influence on the mean number of embryos. Callusing decreased significantly with increasing NAA concentrations. Morphogenesis was stopped with 50 to 100 mg L⁻¹ kanamycin and 7.5 to 15 mg L⁻¹ hygromycin. Although early globular embryos were observed up to 15 mg L⁻¹, further embryo development was inhibited at 10 mg L⁻¹. Interestingly, cefotaxime (250 and 500 mg L⁻¹) promoted a marked effect on enhancing fresh weight of calli, accompanied by decrease in embryo regeneration, whereas timentin concentrations (150 and 300 mg L⁻¹) did not affect embryo differentiation as compared to the control treatment.

Introduction

Eggplant (Solanum melongena L.) is an important Solanaceous species, widely grown in tropical and subtropical regions of the world. It is considered to be an excellent system for in vitro studies since plant regeneration can be achieved via organogenic or embryogenic pathways (Fári et al. 1995a, 1995b; Sharma & Rajam 1995). Transferring genetic information into plant genomes by recombinant DNA techniques has become an important strategy in basic plant biology studies as well, in improving cultivated plants (Billings et al. 1997). It may be accomplished by genetic transformation, where genes are inserted in elite genotypes (Samaccone et al. 1995; Jelenkovic et al. 1998). Therefore, the success of plant transformation needs a system to transfer DNA, a reliable plant regeneration protocol, and an efficient system for selecting the transgenic individuals (Eady & Lister 1998). Studies on eggplant in vitro regeneration indicate interactions between phytohormones, their concentrations and the explants used (Gledtie et al. 1983; Fobert & Webb 1988; Filippone & Luquin 1989; Sharma & Rajam 1995; Billings et al. 1997; Magioli et al. 1998). Various selective agents have been used, as different plant species react differentially to a particular selective agent (Eady & Lister 1998). Selection of transformed cells is mostly performed with kanamycin (Rotino & Gleddie 1990; Fári et al. 1995b; Billings et al. 1997), although low efficiency is reported in some species (Pollock et al. 1983; Mithaka et al. 1998). Different effects of antibiotics and selective agents on in vitro morphogenesis are also observed (Billings et al. 1997; Tarré et al. 1997; Eady & Lister 1998). Besides selection, antibiotics such as augmentin, carbenicillin, cefotaxime and timentin are commonly used for suppressing Agrobacterium growth after co-cultivation in plant tissues (Guri & Sink 1988; Billings et al. 1997; Namehy et al. 1997; Ling et al. 1998). The stimulatory effects of various antibiotics have been observed for a number of species (Mathias & Boyd 1986; Holford & Newbury 1992; Yepes & Aldwineckle 1994; Sarma et al. 1995;
Billings et al. 1997; Nauerby et al. 1997). Among these antibiotics, timentin has recently been made available with marked efficiency for elimination of Agrobacterium, displaying also stimulatory effects on organogenesis (Nauerby et al. 1997; Cheng et al. 1998; Ling et al. 1998; Costa et al. 1999). For eggplant organogenesis, augmentin (300 mg L⁻¹) was considered superior in promoting higher number of buds and shoots per explant as compared to cefotaxime (500 mg L⁻¹) (Billings et al. 1997). Likewise, cefotaxime (200-500 mg L⁻¹) was detrimental for eggplant somatic embryogenesis (Tarré et al. 1997). To date, effects of timentin as compared to other antibiotics on eggplant somatic embryogenesis have not been described yet.

Embú is the widest cultivated of the Brazilian eggplant cultivars, being a candidate for future genetic transformation works, aiming to incorporate desirable agronomic traits, among them, disease resistance genes. The aim of the present work is to evaluate positive effects of NAA concentrations and antibiotics timentin, cefotaxime, kanamycin and hygromycin, on in vitro embryogenesis of this cultivar.

Material and methods

Plant material and explant preparation

Eggplant (Solanum melongena L cv. Embú) seeds were purchased from local commercial establishments. Surface-sterilization was performed by immersion of the seeds in 70% (v/v) ethanol for 1 min, followed by 20 min in a 5% (v/v) sodium hypochlorite solution containing 0.1% (v/v) Tween-20, and then by four rinses in sterile distilled water. Thereafter, seeds were soaked for 24 h, at 26 ± 2 °C, in sterile distilled water on a rotary shaker (100 rpm). Seeds were germinated in Phytagel (Sigma Chemical Co., USA) with 100 ml of basal medium with pH 5.8 and solidified with 0.28% (w/v) Phytagel (Sigma Chemical Co., USA). Cultures were maintained under 16/8 h light/dark regime, 24 mol m⁻² s⁻¹ light radiation, provided by two fluorescent tubes (Luz do Dia Especial, 20 W, Osram, Brazil). Growth room temperature was kept at 26 ± 2 °C. Cotyledons of 16 to 20-day seedlings were aseptically removed and used as explants. Each cotyledon was longitudinally cut into 2 segments and placed with its abaxial surface in contact with the regeneration medium, according to our previously published method (Fari et al., 1995b). All these media, otherwise stated, used MS basal salts (Murashige & Skoog 1962), 100 mg L⁻¹ i-nitol, B5 vitamins (Gamborg et al. 1968), 2% (w/v) sucrose, and 0.8% (w/v) agar (Sigma Chemical Co., USA) along with NAA or antibiotics. The following NAA concentrations were evaluated for somatic embryogenesis induction: 0.0, 2.5, 5.0, 7.5 and 10 mg L⁻¹. Likewise, cefotaxime (União Química Farmacêutica Nacional S/A, Brazil) at 0, 250 and 500 mg L⁻¹, and timentin (SmithKline Beecham Farmacêutica, Brazil) at 0, 150 and 300 mg L⁻¹, were evaluated. Regarding the selective antibiotics, kanamycin (0, 50, 100, 150 and 200 mg L⁻¹) or hygromycin (0, 2.5, 5, 7.5, 10 and 15 mg L⁻¹) (Sigma Chemical Co., EUA) were added to the medium, but also 300 mg L⁻¹ timentin. The antibiotics were filter-sterilized with Millipore filters (0.22 μm; 2.5 cm diameter; Millex), and added to the medium following autoclaving (1.2 kg cm⁻² at 121°C; 15 min) and cooling. After four weeks, data on callus fresh weight (FW) and number of embryos in torpedo stage (EM) per explant were taken. For NAA experiments, the total number of embryos (TE) was also evaluated. For kanamycin and hygromycin experiments, pigment contents were quantified. Pigments were extracted by homogenizing 1–2 g of fresh tissue with 80% acetone, the extract was filtered through filter paper Whatman 1. Carotenoid and chlorophylls "a" and "b" contents were estimated as described by Lichtenthaler (1987). Absorbances were determined at 451 and 503 nm for carotenoids, and 647 and 664.5 nm for chlorophyll. Normal embryos were transferred to MS medium with 150 nM GA₃. The flasks were sealed with two PVC film layers (Rolopack, Brasil). Afterwards, regenerated plants had their roots washed, and were transferred to recipients with distilled water and covered with plastic bags. Approximately a week later, they were transferred into organic substrate (Plantagro) and grown in standardized greenhouse conditions using 50% shading.

Statistical analysis

Statistical analysis was performed using a completely randomized design. Data were subjected to analysis of variance (ANOVA) and then appropriate regression analysis or Tukey’s test (P = 0.05) were used. Treatments had five replicates, with 8 explants per Petri dish. Each experiment was replicated.

Results and discussion

The effect of NAA on somatic embryogenesis in cotyledon explants

NAA, in all concentrations, induced somatic embryogenesis in 100% of the cultured explants (Figure 1) and in the auxin-free treatment senescence was commonly observed. Likewise, these cultures produced neither callus nor embryo, therefore, they are not considered in the evaluation. In NAA-treated explants, all explants displayed high callusing and embryos were found either on the callus surface or within it. From the 10th to 14th day on, yellowish-green embryogenic calli were formed along the cut surface of the longitudinally-halfed cotyledons on NAA-supplemented media. Callusing decreased linearly with NAA concentration, suggesting a negative effect on fresh weight of callus (Figure 2A). Although embryogenesis was promoted in all treatments, except for in control, NAA concentrations had no effect on the number of differentiated embryos (Figure 2B). Indeed, different responses among three independent experiments were observed (Figure 3). Probably, this may be related to different explant developmental and maturation stages, as seen for germination uniformity and seedling development (data not shown). About the third week, cotyledon
Figure 1 Eggplant somatic embryogenesis and antibiotic effects in NAA-supplemented media. A Control; B Cefotaxime (500 mg L$^{-1}$); C Hygromycin (10 mg L$^{-1}$); D Kanamycin (50 mg L$^{-1}$) [Bar = 10 mm]; E Embryos regenerating from cotyledon explants [Bar = 5 mm]; F Embryo growing in maturation media [Bar = 10 mm].

senescence, epicotyl and hypocotyl swelling and radial expansion were frequently observed. Embryos were found to differentiate on the surface and inside the callus. Embryo development was asynchronous as seen by the different embryo stages, from globular to cotyledonary (Figure 1E), within cultured explants. Malformed embryos were frequently observed, and most of them were hyperhydric, making difficult its conversion to plants and subsequent acclimatization. In eggplant, this was also reported by Saito & Nishimura (1994). NAA has been assigned a major role in inducing somatic embryogenesis in eggplant (Gledde et al. 1983; Fobert & Webb, 1988; Fari et al. 1995a). Saito & Nishimura (1994) pointed out better results using 50 μM 2,4-D for somatic embryogenesis induction of cultivar 'Nakate Shinakuro'. Gledde et al. (1983) & Fobert & Webb (1988) verified different optimal NAA concentrations for cultivar 'Imperial Black Beauty' with values differing for leaf (10 mg L$^{-1}$) and cotyledon explants (5 mg L$^{-1}$).
suggested explant-dependent responses. Similarly, significant differences on somatic embryogenesis from leaf explants of 'Emibü', as affected by NAA, were reported by Marbach (1998); while this was not observed for cotyledon explants in the present work. Nevertheless, 5 mg L⁻¹ NAA was chosen based on higher mean values for total number of embryos (95.1) and number of embryo per explant (25.2) (Figure 2B). In the literature, contrasting NAA concentrations were used for eggplant somatic embryogenesis from various sources of explants (Matsuoka & Hinata 1979; Fobert & Webb 1988; Sharma & Rajam 1995; Gledèe et al. 1983; Marbach 1998). These differences may also be related with endogenous phytohormone variations of the explants (Sharma & Rajam 1995), the cultivar (Gledèe et al. 1983), and either environmental or physiological status of the donor plants. These results reinforce the importance of the donor plant for morphogenesis and suggest that this concentration must be optimized, for each cultivar as stated by Sharma & Rajam (1995), Fobert & Webb (1988), and Marbach (1998). The influence of genotype on eggplant regeneration was also observed by Alcicchio et al. (1982) and Matsuoka & Hinata (1979). This is probably associated with different genes, alleles of the same gene or both, which may be related to regeneration. It seems to exist a number of alleles that confer different morphogenic abilities to cultivars, or either a group of genes regulating this characteristic.

Figure 3 Mean number of total embryos (TE), torpedo embryos (TO) and fresh fresh weight (FW) of callus per explant from three independent experiments (I, II, III) as influenced by NAA concentration. Means followed by the same letter, capitals for FW and low case for TE and TO, are not statistically significant by Tukey’s test (P = 0.05).

Kanamycin and hygromycin effects

In the present work a drastic decrease of callogegenesis was also observed (Figures 1C, 1D) and somatic embryogenesis (Figures 4A, 4B) which was due to kanamycin and hygromycin. Both antibiotics arrested embryogenesis, although the latter was more efficient at lower concentrations (Figure 4B). Kanamycin, at 50 mg L⁻¹, was enough for suppressing embryogenesis completely (Figure 4A). Interestingly, torpedo embryos were still observed (Figure 4B) in media supplemented with hygromycin at 2.5 and 5.0 mg L⁻¹. This is not an unusual result, as Park et al. (1995) described a cytokinin-like effect at lower hygromycin concentrations. The higher concentrations tested of this antibiotic did not completely stop induction of embryogenesis, as globular embryos were observed in 15 mg L⁻¹ hygromycin medium. Nonetheless, these embryos did not develop in hygromycin-supplemented media containing 10 or more mg L⁻¹. Similar results were achieved by Bee et al. (1998), where the development of friable globular structures in rice nodular embryogenic units were observed, even from 20 to 50 mg L⁻¹ hygromycin-supplemented media. Several rice lines were compared, and histological analysis revealed that the regeneration pattern depended on the resistance of the differentiating embryos to the antibiotic, generating escapes. It was also verified that proembryos were more resistant to antibiotic selection. Eggplant leaf explants of the cultivar 'Hibish' were sensitive to kanamycin (Billings et al. 1997). No growth of any kind (swelling, callus or buds) was observed in the control, non-inoculated leaf discs grown on 10 to 100 µg mL⁻¹ kanamycin. Higher number of GUS-positive individuals were regenerated in 50 µg mL⁻¹ kanamycin, meanwhile at 70 and 80 µg mL⁻¹ no GUS-positive regenerant was observed. The pH dependent activity is a disadvantage to this antibiotic class, although high kanamycin concentration (100 to 200 mg L⁻¹) is of widespread use for transgenic eggplant selection, except for Guri & Sink (1988), but without success to regenerate hygromycin resistant plants (Filippone & Laquin 1989;
Rotino & Gleddie 1990; Fári et al. 1995b; Billings et al. 1997; Szász et al. 1998). Kanamycin at 4 mg L\(^{-1}\) and hygromycin at 0.8 mg L\(^{-1}\) were effective for transgenic selection, although hygromycin presented higher toxicity compared to kanamycin to *Vitis vinifera* explants (Péros et al. 1998), similarly to *Solanum melongena*. Eady & Lister (1998) observed that kanamycin was a less effective selectable marker in selecting embryogenic callus derived from immature embryos of onion. A gradual decrease in callus growth was also noted with increasing hygromycin concentration. Antibiotics of aminoglycoside type showed different levels of toxicity levels as reported by Pollock et al. (1983) using *N. plumbaginifolia* cells as explants.

In respect to pigments, chlorophylls "a", "b", "a + b" and carotenoid contents were lower in explants grown in kanamycin or hygromycin containing media (Figures 4 C, 4D). Drastic decrease was observed also in the callusing response. Lower pigment contents were also verified in explants where only embryogenesis was induced without antibiotics (Figures 4 C, 4D). We may attribute this to the natural degradation of the pigments and on the other hand to the callusing intensity, because the much higher fresh weight of callus diluted the existing pigments. Aminoglycoside antibiotics as, kanamycin, inhibit protein synthesis of mitochondria and chloroplasts resulting in chlorosis and in reduced growth of plant tissue (Weide et al. 1989; Eady & Lister 1998). Hygromycin, on the other hand, inhibit protein synthesis in eucaryotic systems (Eady & Lister 1998). The scarcity of pigments may be associated to this inhibition, altering its production and/or its degradation. Selection of transformed cells is critical for recovering transgenic plants, the concentration of the selective agent should prevent regeneration without being toxic to the target explant (Vepes & Afdwincle 1994). Antibiotics as gentamicin (G-418), hygromycin, or herbicides, like methotrexate and phosphinotricin, proved to be better markers to score *C. annuum*, compared to kanamycin (Mihalka et al. 1998). In the present work, the same was observed to eggplant since hygromycin was suitable to arrest the morphogenic process at lower concentrations compared with kanamycin.

Effect of timentin and cefotaxime on somatic embryogenesis of eggplant

Callogenesis was stimulated in the presence of both timentin and cefotaxime (Figures 5A, 5B). Timentin did not affect embryo differentiation significantly (Figure 5C) whereas cefotaxime decreased somatic embryogenesis markedly (Figure 5D). An overall negative effect of cefotaxime was observed on embryogenesis similarly on organogenesis (data not shown). Up to nont, differential effects of timentin as compared to other antibiotics on the somatic embryogenesis of eggplant have not been described yet. As outlined by Cheng et al. (1998) timentin can be considered an alternative antibiotic for those species in which regeneration potential is negatively affected by carbenicillin and cefotaxime. Timentin at concentrations of
200–500 mg L\(^{-1}\), employing a ratio of ticarcillin to clavulanic acid at 50:1 and 100:1, had little effect on shoot regeneration of tobacco (Nicotiana tabacum) and Siberian elm (Ulmus pumila L.). Timentin was also as effective as carbenicillin and cefotaxime in suppressing A. tumefaciens at concentrations commonly used in transformation. Likewise, Tarré et al. (1997) pointed out that cefotaxime caused a decrease on somatic embryogenesis of eggplant and that 400 mg L\(^{-1}\) ampicillin reduced the inhibitory effect on somatic embryogenesis more than the other antibiotics tested. Either the development of embryo or its induction was affected by cefotaxime (Figure 6). Our data confirm previous findings that cefotaxime led to negative effects on eggplant somatic embryogenesis (Tarré et al. 1997). Similarly, 500 mg L\(^{-1}\) cefotaxime reduced the production of embryo significantly in Ipomeoa batatas (Gama et al. 1996). Inhibitory effects of cefotaxime were also observed in Picca sitcheensis (Sarina et al. 1995), and Antirrhinum majus, Arabidopsis, Solanum tuberosum (Nauerby et al. 1997). Whereas its positive effects on Triticum aestivum (Mathias & Boyd 1986), Pennisetum americanum (Pius et al. 1993), Malus x domestica (Yepes & Aldwinckle 1994) are also known. Lin et al. (1995) showed that carbenicillin and cefotaxime increased callus formation in tobacco. Cefotaxime is a cephalosporin (Pius et al. 1993), whereas timentin is an antibiotic composed of ticarcillin, a semi-synthetic penicillin, and clavulanic acid, a β-lactamase inhibitor (Cheng et al. 1998). They interrupt the peptidoeglican synthesis by binding to the periplasm leading bacterial cells to death (Nauerby et al. 1997). The structure of these antibiotics similar to auxins and their hormonal activity suggest auxin-like effects besides their bactericidal effect (Lin et al. 1995). Holford & Newbury (1992) demonstrated that regeneration stimuli are related to the metabolism of penicillin; one of the products is the phenyl acetic acid, a weak natural auxin that should contribute to these responses. This positive effect was not observed in the eggplant ‘Embú’, probably because NAA concentrations, ranging from 2.5 to 10 mg L\(^{-1}\), had no influence on embryogenesis. Another hypothesis is that the compound with auxin function would have no effect on somatic embryogenesis of eggplant. These results suggest different
assimilation ratios of substances leading to a particular effect on embryogenesis depending on the species, genotype and antibiotic concentration studied.

Our results prove that timentin is a better option to be used in transformation protocols of eggplant compared to cefotaxime. It was based on the non-reduction of the mean embryo number and total number of embryos, where no negative effect could be observed, the same did not occur to cefotaxime. The data obtained from this research support the genetic transformation aimed to incorporate disease resistance genes as SW-5, which confers resistance to tospovirus (Picoli et al. 1999) and to optimize transformation protocols.

Acknowledgements

EATP is recipient of scholarship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil).

References

