Economics

The Global Electric Car Industry and the Related Indirect Emission

Published:
April 8, 2022
Author
View
Keywords
License

Copyright (c) 2022 Kevin Németh

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Németh, K. (2022). The Global Electric Car Industry and the Related Indirect Emission. International Journal of Engineering and Management Sciences, 7(1). https://doi.org/10.21791/IJEMS.2022.1.2.
Abstract

Our planet tries to create a more environmental friendly transport. Related to the car purchases we can determine the consumers’ attitudes have changed in the last years and we can say that the electric cars have become one of the most significant participants in the industry. In one of his investigations Christopher Buchal realised electric cars can burden the environment with more than 11-28% than the avarage engine cars. It is possible if we make difference between direct and indirect emission, because the direct emission of the electric cars is zero, but the indirect emission can be really high related to the power generation. My goal is giving a real picture about the electric car industry and presenting my suggestions for the future.

References
  1. Rechnitzer J. – Hausmann R. – Tóth T. (2017): A magyar autóipar helyzete nemzetközi tükörben. Hitelintézeti Szemle. 16. évf. 1. sz. pp. 119-142.
  2. Buchal, C. – Karl, H. D. – Sinn, H. W. (2019): Kohlemotoren, Windmotoren und Dieselmotoren: Was zeigt die CO2-Bilanz? ifo Schnelldienst, ifo Institut – Leibniz-Institut für Wirtschaftsforschung an der Universität München. Vol. 72. No. 8. pp. 40-54.
  3. Frölicher, T. L. – Winton, M. – Sarmiento, J. L. (2013): Continued global warming after CO2 emissions stoppage. Nature Climate Change. Vol. 4. No. 1. pp. 40-44.
  4. Globalwarming Index (2021): Human-induced warming. Forrás: https://www.globalwarmingindex.org (letöltve: 2021. 11. 28.)
  5. IPCC (2021): Impacts of 1.5°C of Global Warming on Natural and Human Systems. Forrás: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Chapter3_High_Res.pdf (letöltve: 2021. 11. 28.)
  6. Helmers, E. – Weiss, M. (2017): Advances and critical aspects in the life-cycle assessment of battery electric cars. Energy and Emission Control Technologies. Vol. 5. pp. 1-18.
  7. Volkswagen AG (2020): A holistic approach from start to finish: A vehicle’s environmental footprint reveals the sources of environmental pollution. Forrás: https://www.volkswagenag.com/en/news/stories/2019/04/from-the-well-to-the-wheel.html# (letöltve: 2021. 05. 25.
  8. Pavlovic, J. – Ciuffo, B. – Fontaras, G., – Valverde, V. – Marotta, A. (2018): How much difference in type-approval CO 2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice. Vol. 111. pp. 136-147.
  9. Evans, S. (2020): Simon Evans is on paternity leave. Forrás: https://twitter.com/DrSimEvans (letöltve: 2021. 05. 29.)
  10. Lawson, S. J. – Gleim, M. R. – Perren, R. – Hwang, J. (2016): Freedom from ownership: An exploration of access-based consumption. Journal of Business Research. Vol. 69. No. 8. pp. 2615-2623.
  11. Catulli, M. – Lindley, J. K. – Reed, N. B. – Green, A. – Hyseni, H. – Kiri, S. (2013): What is mine is not yours: Further insight on what access-based consumption says about consumers. Consumer Culture Theory. Vol. 15. pp. 185-208.
  12. Edbring, E. G. – Lehner, M. – Mont, O. (2016): Exploring consumer attitudes to alternative models of consumption: motivations and barriers. Journal of Cleaner Production. Vol. 123. pp. 5-15.
  13. Ferrero, F. – Perboli, G. – Rosano, M. – Vesco, A. (2018): Car-sharing services: An annotated review. Sustainable Cities and Society. Vol. 37. pp. 501-518.
  14. Bardhi, F. – Eckhardt, G. M. (2012): Access-based consumption: The case of car sharing. Journal of Consumer Research. Vol. 39- No. 4. pp. 881-898.
  15. Mounce, R. – Nelson, J. D. (2019): On the potential for one-way electric vehicle car-sharing in future mobility systems. Transportation Research Part A. Vol. 120. pp. 17-30.
  16. Gambella, C. – Malaguti, E. – Masini, F. – Vigo, D. (2018): Optimizing relocation operations in electric car-sharing. Omega. Vol. 81. pp. 234-245.
  17. Rotaris, L. – Danielis, R. – Maltese, I. (2019): Carsharing use by college students: The case of Milan and Rome. Transportation Research Part A. Vol. 120. pp. 239-251.
  18. Prieto, M. – Baltas, G. – Stan, V. (2017): Car sharing adoption invention in urban areas: What are the key sociodemographic drivers? Transportation Research Part A. Vol. 101. pp. 218-227.
  19. Simon, D. – Németh, K. (2021): Home office, mint foglalkoztatási forma: A távmunka globalizációjának, illetve hatékonyságának vizsgálata. Humán Innovációs Szemle. Vol. 12. No. 1. pp. 23-35.
  20. Jung, J. – Koo, Y. (2018): Analyzing the effects of car sharing services on the reduction of greenhouse gas (GHG) emissions. Sustainability Vol. 10. No. 539. pp. 1-17.
  21. Toyota (2019): Toyota promotes global vehicle electrification by providing nearly 24000 licences royalty-free. Forrás: https://global.toyota/en/newsroom/corporate/27512455.html (letöltve: 2021. 06. 08.)
  22. Lehoczky, É. – Reisinger, P. – Kőmíves, T. – Szalai, T. (2006): Study on the early competition between sunflower and weeds in field experiments. Journal of Plant Diseases and Protection. Vol. 20. No. 20. pp. 935-940.
  23. Hussain, A. – Arif, S. M. – Aslam, M. (2017): Emerging revewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews. Vol. 71. pp. 12-28.
  24. Fróna, D. – Szenderák, J. – Harangi-Rákos, M. (2019): The challenge of feeding the world. Sustainability. Vol. 11. No. 20. Article No. 5816. pp. 1-18.
  25. Harangi-Rákos, M. – Popp, J. – Oláh, J. (2018): A biomassza energetikai és egyéb célú felhasználása. Magyar Energetika. Vol. 25. No. 2. pp. 8-16.
  26. Popp, J. – Harangi-Rákos, M. – Kapronczai, I. – Oláh, J. (2018a): Magyarország megújuló energiatermelésének kilátásai. Gazdálkodás. Vol. 62. No. 2. pp. 103-122.
  27. Popp, J. – Harangi-Rákos, M. – Oláh, J. (2018b): A napraforgó- és repce vertikum versenyképességének kilátásai. Journal of Central European Green Innovation. Vol. 6. No. 1. pp. 75-108.
  28. Harangi-Rákos, M. – Popp, J. – Oláh, J. (2017a): A bioüzemanyag előállítás globális kilátásai. Journal of Central European Green Innovation. Vol. 5. No. 4. pp. 13-31.
  29. Harangi-Rákos, M. – Popp, J. – Oláh, J. (2017b): A megújuló energia termelésének kilátásai az EU energiafogyasztásában. Energiagazdálkodás. Vol. 58. No. 6. pp. 19-25.
  30. Lipman, T. E. – Elke, M. – Lidicker, J. (2018): Hydrogen fuel cell electric vehicle performance and user-response assessment: Results of an extended driver study. International Journal of Hydrogen Energy. Vol. 43. No. 27. pp. 12442-12454.
  31. Hardman, S. – Tal, G. (2018): Who are the early adopters of fuel cell vehicles? International Journal of Hydrogen Energy. Vol. 43. pp. 17858-17866.
  32. Ajanovic, A. – Haas, R. (2021): Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. International Journal of Hydrogen Energy. Vol. 46. pp. 10049-10058.
  33. Manoharan, Y. – Hosseini, S. E. – Butler, B. – Alzhahrani, H. – Fou Senior, B. T. – Ashuri, T. – Krohn, J. (2019): Hydrogen fuel cell vehicles; current status and future prospect. Applied Sciences. pp. 1-17.
  34. Wilberforce, T. – El-Hassan, Z. – Khatib, F. N. – Al Makky, A. – Baroutaji, A. – Carton, J. G. – Olabi, A. G. (2017): Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy. Vol. 42. No. 40. pp. 25695-25734.
  35. Eurostat (2016): Greenhouse gas emissions by IPCC source sector, EU28, 2016. Forrás: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Greenhouse_gas_emissions_by_IPCC_source_sector,_EU28,_2016_.png (letöltve: 2021. 05. 24.)
  36. Európai Parlament (2019): Üvegházhatású gázok EU-s országonként és világszinten. Forrás: https://www.europarl.europa.eu/news/hu/headlines/society/20180301STO98928/uveghazhatasu-gazok-kibocsatasa-az-eu-ban-infografika (letöltve: 2021. 11. 28.)
  37. Menyhárt, J. (2013): Elektromos hajtású jármű akkumulátor állapot felügyelete labview grafikus programmal. Debreceni Műszaki Közlemények. pp. 13-24.
  38. Tirachini, A. – Cats, O. (2020): COVID-19 and public transportation: Current assessment, prospect, and research needs. Journal of Public Transportation. Vol. 22. No. 1. pp. 1-21.
  39. De Vos, J. (2020): The effect of COVID-19 and subsequent social distancing on travel behavior. Transportation Research Interdisciplinary Perspectives. Vol. 5. pp. 1-3.
  40. Xu, F. – Chen, X. – Zhang, M. – Zhou, Y. – Cai, Y. – Zhou, Y. – Tang, R. – Wang, Y. (2020): A sharing economy market system for private EV parking with consideration of demand site management. Energy Vol. 190. 116321. pp. 1-14.
  41. Hardman, S. – Jenn, A. – Tal, G. – Axsen, J. – Beard, G. – Daina, N. – Figenbaum, E. – Jakobsson, N. – Jochem, P. – Kinnear, N. – Plötz, P. – Pontes, J. – Refa, N. – Sprei, F. – Turrentine, T. – Witkamp, B. (2018): A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transportation Research Part D: Transport and Environment. Vol. 62. pp. 508-523.
  42. Sandbag (2020): The Path of Least Resistance. Forrás: https://ember-climate.org/project/interconnectors-and-coal/ (letöltve: 2021. 05. 25.)
  43. Innovációs és Technológiai Minisztérium (2019): Nemzeti Energia- és Klímaterv. Forrás: https://ec.europa.eu/energy/sites/ener/files/documents/hu_final_necp_main_hu.pdf (letöltve: 2021. 06. 04.)
  44. Bihari D. (2017): Még hogy az elektromos autók nem szennyeznek. Forrás: https://24.hu/tudomany/2017/09/26/meg-hogy-az-elektromos-autok-nem-szennyeznek/ (letöltve: 2021. 05. 28.)
  45. Rabczak, S. – Proszak-Miąsik D. (2016): Effect of the type of heat sources on carbon dioxide emmisions. Journal of Ecological Engineering. Vol. 17. No. 5. pp. 186–191.
  46. IPCC Guidelines (2019): Introduction to National GHG Inventories. Forrás: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/1_Volume1/19R_V1_Ch01_Introduction.pdf (letöltve: 2021. 11. 28.)
  47. Government of Iceland (2018): Iceland’s Climate Action Plan for 2018-2030. Forrás: https://www.government.is/library/Files/Icelands%20new%20Climate%20Action%20Plan%20for%202018%202030.pdf (letöltve: 2021. 05. 28.)
  48. World Bank (2017): Renewable energy consumption (% of total final energy consumption). Forrás: https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS?view=chart (letöltve: 2021. 05. 28.)
  49. Ministère de la Transition écologique (2019): Stratégie Francaise Pour L’Énergie Et Le Climat. Forrás: https://www.ecologie.gouv.fr/sites/default/files/Projet%20PPE%20pour%20consultation.pdf (letöltve: 2021. 05. 25.)
  50. Schweizerische Eidgenossenschaft (2019): Energy – Facts and Figures. Forrás: https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/energie/energie---fakten-und-zahlen.html (letöltve: 2021. 05. 23.)
  51. Wu, T. – Hertzke, P. – Müller, N. – Schaufuss, P. – Schenk, S. (2019): Expanding electric-vehicle adoption despite early growing pains. Forrás: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains (letöltve: 2021. 05. 28.)
  52. Shearer, C. – Fofrich, R. – Davis, S. J. (2017): Future CO2 emissions and electricity generation from proposed coal-fired power plants in India. Earth’s Future. Vol. 5. No. 4. pp. 408-416.
  53. Firstrow (2019): Az elektromos autók előnyei és hátrányai. Forrás: https://firstrow.hu/az-elektromos-autok-elonyei-es-hatranyai/ (letöltve: 2021. 05. 28.)
Database Logos