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Abstract. This paper gives an analytical method to obtain the deformation of a cantilever curved beam. The curved 

beam considered has circular centre line and the thickness of the cross section in radial direction depends on the 

circumferential coordinate. The kinematics of the Euler-Bernoulli beam model is used to formulate of governing 

equations. The curved homogeneous and isotropic elastic beam is fixed at the one of the end cross section and on the 

other end cross section is subjected to concentrated forces and a couple. A numerical example illustrates the 

applications of the derived formulae. 
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Introduction 

The analysis of a curved beam is a standard topic in the most text-books of solid mechanics [1,2,3,4]. 

This theme is still concern at the present time because the curved elements are important components 

in many modern engineering structures. In this paper an analytical solution is presented for the 

cantilever curved beams whose thickness in radial direction is not constant. One of the end cross section 

of the curved beam is fixed and the other end cross section is subjected to radial and circumferential 

concentrated forces and a couple.  

Elasticity solutions are presented in [5] for orthotropic functionally graded circular curved beam of 

uniform cross sections by means of Airy stress functions. The developed method is illustrated in curved 

cantilever beams with different types of loading conditions. Paper by Pydah and Sabale [6] presents an 

analytical model for the flexure of bidirectional functionally graded circular beam. The formulation of 

the considered problem is based on the Euler-Bernoulli’s beam theory. The governing equations are 

solved for statically determinate circular cantilever beam under the action of tip loads. Paper [7] deals 

with the determination of stresses in circular curved beam of uniform cross section which has cross 

sectional inhomogeneity. In paper by Ecsedi and Lengyel [8] an analytical solution is given for the 

determination of deformations of curved composite beams with uniform cross sections. The developed 

analytical solution is based on fundamental solutions which are filling to the given loading and 

supporting conditions. Closed form formulae are derived for the displacements, cross-sectional rotation 

and the normal and shearing stresses. Several studies give finite element numerical solutions to the in-

plane deformation of static problems of circular curved beam with uniform cross sections such as [9, 10, 

11]. 
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1. Governing equations 

In cylindrical coordinate system Orφz the curved beam of variable cross section occupies the space 

domain B (Fig. 1)  

 𝐵 = {(𝑟, 𝜑, 𝑧)|0 ≤ 𝜑 ≤ 𝛼, 𝑟1(𝜑) ≤ 𝑟 ≤ 𝑟2(𝜑), −𝑡/2 ≤ 𝑧 ≤ 𝑡/2}, (1) 

where 𝑟𝑖(𝜑) (𝑖 = 1, 2) is the radius of the inner and of the outer cylindrical boundary surfaces of body 

B. 𝑡, which is constant, denotes the cross-sectional thickness along 𝑧 direction. The case, when the cross 

sectional thickness is not constant along the direction of axis 𝑧, is analysed in paper [13]. The radius 𝑅 of 

the circular centre line is also constant. 
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Figure 1. Cantilever curved beam with tip loads 

The plane 𝑧 = 0 is the plane of symmetry of the curved beam and of the applied loads. Denote the unit 

vectors of cylindrical coordinate system Orφz  𝐞𝑟, 𝐞𝜑, 𝐞𝑧 . The following displacement field is used to 

describe the in plane deformation of the cantilever beam [12] 

 𝐮(𝑟, 𝜑) = 𝑈(𝜑)𝐞𝑟(𝜑) + (𝑟𝜙(𝜑) + 𝑉(𝜑))𝐞𝜑(𝜑),     𝑉(𝜑) =
d𝑈

d𝜑
. (2) 

Application of the strain-displacement relationships of the linearized theory of elasticity gives [8, 12] 

 𝜀𝑟 = 𝜀𝑧 = 𝛾𝑟𝑧 = 𝛾𝜑𝑧 = 𝛾𝑟𝜑 = 0,     𝜀𝜑 =
𝑊(𝜑)

𝑟
+

d𝜙

d𝜑
,     𝑊(𝜑) =

d2𝑈

d𝜑2 + 𝑈. (3) 

In equation (3) 𝜀𝑟, 𝜀𝜑, 𝜀𝑧 are the longitudinal strains and 𝛾𝑟𝜑 , 𝛾𝑟𝑧, 𝛾𝑧𝜑 are the shearing strains. The strains 

given by equation (3) satisfy the requirements of the Euler-Bernoulli’s beam theory only the normal 

strain 𝜀𝜑 is different from zero and all the other strains vanish. According to papers [8, 12] we define 

the stress resultant forces 𝑁 = 𝑁(𝜑), 𝑆 = 𝑆(𝜑) and stress couple resultant 𝑀 = 𝑀(𝜑) as 

 𝑁(𝜑) = ∫ 𝜎𝜑(𝑟, 𝜑)d𝐴
𝐴(𝜑)

,     𝑆(𝜑) = ∫ 𝜏𝑟𝜑(𝑟, 𝜑)d𝐴
𝐴(𝜑)

,     𝑀(𝜑) = ∫ 𝑟𝜎𝜑(𝑟, 𝜑)d𝐴
𝐴(𝜑)

 (4) 

where 𝜏𝑟𝜑 = 𝜏𝑟𝜑(𝑟, 𝜑)  denotes the shearing stress. Here, we note, the shear force 𝑆 = 𝑆(𝜑) will be 

computed by the use of a force equilibrium equation which is the usual way in the case of Euler-Bernoulli 
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beam theory. Fig. 2 illustrates the stress resultant forces and the stress couple resultant in an arbitrary 

cross section of the curved beam.  
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Figure 2. Illustration of 𝑁(𝜑), 𝑆(𝜑) and 𝑀(𝜑) 

Application of the Hooke’s law gives 

 𝜎𝜑(𝑟, 𝜑) = 𝐸 (
𝑊(𝜑)

𝑟
+

d𝜙

d𝜑
), (5) 

where E is the modulus of elasticity. From equation (4) it follows that 

 𝑁(𝜑) = 𝐸𝑡 (𝑎(𝜑)𝑊(𝜑) + 𝑏(𝜑)
d𝜙

d𝜑
) ,     𝑀(𝜑) = 𝐸𝑡𝑏(𝜑) (𝑊(𝜑) + 𝑅

d𝜙

d𝜑
). (6) 

Here, 

 𝑎(𝜑) = ln (
𝑟2(𝜑)

𝑟1(𝜑)
) ,     𝑏(𝜑) = 𝑟2(𝜑) − 𝑟1(𝜑). (7) 

The equilibrium equations in terms of N, S and M for circular curved cantilever beam which is loaded 

only its end cross sections are [8, 12] 

 
d𝑁

d𝜑
+ 𝑆 = 0,     

d𝑆

d𝜑
− 𝑁 = 0,     

d𝑀

d𝜑
= 0. (8) 

We remark that the considered cantilever curved beams satisfy 

 𝑈(0) = 0,     𝑉(0) = 0,     𝜙(0) = 0. (9) 

Fig.1 shows the curved cantilever beam with the applied load system. The solution of equilibrium 

equations (8) can be represented as 

𝑁(𝜑) = −𝐹1 sin(𝜑 − 𝛼) + 𝐹2 cos(𝜑 − 𝛼) ,     𝑆(𝜑) = 𝐹1 cos(𝜑 − 𝛼) + 𝐹2 sin(𝜑 − 𝛼) ,     𝑀(𝜑) = 𝑀3. (10) 

2. Formulation of the analytical solution 

From equation (6) we can derive a system of linear equations for 𝑊(𝜑) and 𝜙1(𝜑) =
d𝜙

d𝜑
 

 𝑎(𝜑)𝑊(𝜑) + 𝑏(𝜑)𝜙1(𝜑) =
1

𝐸𝑡
(−𝐹1 sin(𝜑 − 𝛼) + 𝐹2 cos(𝜑 − 𝛼)), (11) 

 𝑊(𝜑) + 𝑅𝜙1(𝜑) =
𝑀3

𝐸𝑡𝑏(𝜑)
. (12) 
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The solution of the system of linear equations is as follows 

 𝑊(𝜑) =
𝑅

𝐸𝑡

𝑁(𝜑)

𝑅𝑎(𝜑)−𝑏(𝜑)
−

1

𝐸𝑡

𝑀3

𝑅𝑎(𝜑)−𝑏(𝜑)
, (13) 

 𝜙1(𝜑) = −
1

𝐸𝑡

𝑁(𝜑)

𝑅𝑎(𝜑)−𝑏(𝜑)
+

1

𝐸𝑡

𝑎(𝜑)

𝑏(𝜑)

𝑀3

𝑅𝑎(𝜑)−𝑏(𝜑)
. (14) 

Here, the undermentioned result of the theory of ordinary differential equations will be used [14, 15]. 

Theorem. Let ℎ = ℎ(𝑥) be a continuous bounded function defined for 𝑥 ∈ [0, 𝑎 > 0]. In this case the 

solution of the initial-value problem 

 
d2𝑦

d𝑦2 + 𝑦 = ℎ(𝑥),     0 ≤ 𝑥 ≤ 𝑎,     𝑦(0) = 0,     (
d𝑦

d𝑥
)

𝑥=0
= 0 (15) 

can be represented as 

 𝑦(𝑥) = ∫ ℎ(𝜆) sin(𝑥 − 𝜆)d𝜆
𝑥

0
 (16) 

and we have 

 
d𝑦

d𝑥
= ∫ ℎ(𝜆) cos(𝑥 − 𝜆) d𝜆

𝑥

0
. (17) 

The application of cited Theorem gives the formulae of the radial displacement 𝑈(𝜑) = 𝑈1(𝜑) + 𝑈2(𝜑) 

and circumferential displacement 𝑉(𝜑) = 𝑉1(𝜑) + 𝑉2(𝜑) 

 𝑈1(𝜑) =
𝑅

𝐸𝑡
∫

𝐹2 cos(𝜗−𝛼)−𝐹1 sin(𝜗−𝛼)

𝑅𝑎(𝜗)−𝑏(𝜗)
sin(𝜑 − 𝜗) d𝜗

𝜑

0
, (18) 

 𝑈2(𝜑) = −
𝑀3

𝐸𝑡
∫

sin(𝜑−𝜗)

𝑅𝑎(𝜗)−𝑏(𝜗)
d𝜗

𝜑

0
, (19) 

 𝑉1(𝜑) =
𝑅

𝐸𝑡
∫

𝐹2 cos(𝜗−𝛼)−𝐹1 sin(𝜗−𝛼)

𝑅𝑎(𝜗)−𝑏(𝜗)
cos(𝜑 − 𝜗) d𝜗

𝜑

0
, (20) 

 𝑉2(𝜑) = −
𝑀3

𝐸𝑡
∫

cos(𝜑−𝜗)

𝑅𝑎(𝜗)−𝑏(𝜗)
d𝜗

𝜑

0
. (21) 

The expression of the cross-sectional rotation 𝜙 = 𝜙(𝜑) can be obtained by integration of equation (14) 

 𝜙(𝜑) =
1

𝐸𝑡
{∫ [

𝐹1 sin(𝜗−𝛼)−𝐹2 cos(𝜗−𝛼)

𝑅𝑎(𝜗)−𝑏(𝜗)
+

𝑀3𝑎(𝜗)

𝑏(𝜗)(𝑅𝑎(𝜗)−𝑏(𝜗))
] d𝜗

𝜑

0
}, (22) 

The determination of the expression of the circumferential normal stress 𝜎𝜑(𝑟, 𝜑) is based on equation 

(5) by a brief computation we get that 

 𝜎𝜑(𝑟, 𝜑) =
1

𝑡(𝑅𝑎(𝜑)−𝑏(𝜑))
{𝐹1 (1 −

𝑅

𝑟
) sin(𝜑 − 𝛼) − 𝐹2 (1 −

𝑅

𝑟
) cos(𝜑 − 𝛼) + 𝑀3 (

𝑎(𝜑)

𝑏(𝜑)
−

1

𝑟
)}. (23) 

From the formula (23) it follows that if 𝑀3 = 0 then we have 𝜎𝜑(𝑅, 𝜑) = 0 for 0 ≤ 𝜑 ≤ 𝛼. 

3. Numerical example 

The following data are used in the numerical example: 𝑅 = 60 mm , 𝑡 = 3 mm , 𝛼 = 𝜋/2 , 

𝐸 = 2 × 105 N

m2, 𝛽 = 0.25, 
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 𝑟1(𝜑) = 𝑅 [1 −
0.25𝛽

𝜑+
𝜋

20

],     𝑟2(𝜑) = 𝑅 [1 +
0.25𝛽

𝜑+
𝜋

20

]. (24) 

The graph of the radial displacement 𝑈 = 𝑈(𝜑)  and the graph of the circumferential displacement 

𝑉 = 𝑉(𝜑) are shown in Fig.3 and Fig.4, respectively. In Fig. 5, the plot of the cross-sectional rotation  

𝜙 = 𝜙(𝜑) is presented as a function of 𝜑. 

 

Figure 3. Plot of 𝑈 = 𝑈(𝜑) 

 

Figure 4. Plot of 𝑉 = 𝑉(𝜑) 
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Figure 5. Plot of 𝜙 = 𝜙(𝜑) 

The plots of 𝜎𝜑(𝑟, 𝜑) for three different values of polar angle 𝜑 (𝜑 = 0, 𝜑 =
𝜋

6
, 𝜑 = 𝛼 =

𝜋

2
) are shown 

in Fig. 6. Fig. 7 gives the distribution of the normal stress in the fixed end cross section, 𝜑 = 0. 

 

Figure 6. The plots of 𝜎𝜑(𝑟, 𝜑) for 𝜑 = 0, 𝜑 =
𝜋

6
, 𝜑 = 𝛼 =

𝜋

2
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Figure 7. The graph of 𝜎𝜑(𝑟, 0) 

Conclusions 

In this paper elastic cantilever curved beam of variable cross section is studied. The thickness of the 

curved circular beam in radial direction is not constant it is a smooth function of the polar angle. The 

considered curved beam at one of the end cross section is fixed and at the other end cross section is 

loaded by two concentrated forces and a couple. Paper presents an analytical solution of the above 

mentioned statics problem. The formulation is based on the Euler-Bernoulli curved beam theory. The 

results of the presented numerical example can be used as a benchmark solution to verify the accuracy 

of the results obtained by other methods. 
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