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Abstract. This paper deals with the linear thermoelastic analysis of functionally graded multilayered spherical bodies 

subjected to constant mechanical and thermal loading. The temperature field is arbitrary function of the radial 

coordinate, the material properties and the radial body force vary according to power law functions along the radius 

of the sphere. An analytical method is presented to calculate the displacements and stresses within the multilayered 

spherical body. The method is expanded to tackle the problem of spherical bodies made from radially graded materials 

with temperature dependent material properties. The results are compared to finite element simulations and other 

methods. 
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Introduction  

In recent years, laminated or multilayered composite and functionally graded materials (or FGMs for 

short) have been widely used in numerous engineering applications due to their excellent material 

properties. The concept of FGM was first considered in Japan in the 1980’s during a hypersonic space 

plane project, where the body of the spaceplane is exposed to an extremely high temperature 

environment (about 2000 K), with a large temperature gradient (approximately 1000 K), between the 

inside and outside of the spaceplane which required an advanced material. In a functionally graded 

material the composition and structure gradually change, resulting in a corresponding change in the 

material properties. Due to the smooth transition between the constituent components, these materials 

have improved thermal resistance and mechanical properties. In recent decades this concept has 

become more popular, a lot of textbooks [1-3] and papers deal with the determination of stresses and 

displacements within simple structural components (e.g. spherical bodies, beams or disks) caused by 

steady-state temperature field and mechanical loading. 

Papers, such as [4-10] investigate heterogeneous and functionally graded beams from different aspect. 

Works by Pen [11], Gönczi [12-13], Sondhi [14] and Allam [15] (etc.) dealt with the thermomechanical 

problems of disks subjected to thermal and mechanical loads.  

Paper [16] studied the elastic and perfectly plastic radially graded spheres where the material 

properties were power functions of the radial coordinate. 

Kar and Kanoria [17] dealt with the determination of thermoelastic interaction due to a step thermal 

loading on the boundary surfaces of a radially graded orthotropic spherical body, while paper [18] 
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presented an analytical approach to investigate the non-linear response of radially graded shallow 

spherical shells subjected to axisymmetric external pressure and temperature field incorporating the 

effects of imperfections. Paper [19] gives solutions for radially graded cylinders and spheres where the 

material properties were described by specific exponential functions.  Nayak et. al in [20] give analytical 

solutions to determine the stress and displacement fields within thick-walled functionally graded 

spherical pressure vessels. Paper [21] presented a method to determine the stresses within radially 

graded spherical bodies where the material properties were arbitrary functions of the radial coordinate 

and temperature field based on a multi-layered approach. Akinlabi et. al. [22] investigated a 

thermoelastoplastic method to analyse radially graded spheres after thermal treatment. 

In this paper, our objective is to develop a method to determine the exact stresses and displacements in 

multilayered spherical bodies subjected to thermal loading, constant pressure and incorporating radial 

body forces. The material properties and the radial body force are considered to be power functions of 

the radial coordinate (in rφϑ spherical coordinate system) within the layers, the number of layers is 

denoted by N. The constant pressure is denoted by pouter which acts on the outer curved boundary 

surface (r=RN+1) while the uniformly distributed mechanical loading exerted on the inner surface (r=R1) 

is denoted by pinner. The temperature field T(r) is arbitrary function of the radial coordinate. The i-th 

layer is illustrated in Fig. 1. The method can be modified to tackle the problems of radially graded 

spherical pressure vessels where the material properties, temperature field and the radial body force 

are arbitrary functions of the radial coordinate furthermore the material properties depend on the 

temperature field.  

 

Figure 1. The sketch of the i-th layer. 

1. Formulation of the problem  

For this one-dimensional problem the non-zero coordinate of the displacement field (in the radial 

direction) can be used to construct the kinematic equation as 

𝜀𝑟,𝑖 =
d𝑢𝑟,𝑖(𝑟)

d𝑟
, (1) 
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𝜀𝜑,𝑖 =
𝑢𝑟,𝑖

𝑟
, 𝑟 = 𝑅𝑖 … 𝑅𝑖+1, (2) 

in the i-th layer. For isotropic materials the constitutive equations (Hooke’s law for isotropic linearly 

elastic materials) are 

𝜎𝑟,𝑖 =
𝐸𝑖

(1 + 𝜈𝑖)(1 − 2𝜈𝑖)
[(1 − 𝜈𝑖)𝜀𝑟,𝑖 + 2𝜈𝑖𝜀𝜑,𝑖 − (1 + 𝜈𝑖)𝛼𝑖𝜗], (3) 

𝜎𝜑,𝑖 = 𝜎𝜃,𝑖 =
𝐸𝑖

(1 + 𝜈𝑖)(1 − 2𝜈𝑖)
[𝜈𝑖𝜀𝑟,𝑖 + 𝜀𝜑,𝑖 − (1 + 𝜈𝑖)𝛼𝑖𝜗].      (4) 

In this case the equilibrium equation is 

d𝜎𝑟,𝑖

d𝑟
+

2

𝑟
(𝜎𝑟,𝑖 − 𝜎𝜑,𝑖) + 𝑞𝑟,𝑖 = 0, (5) 

Let the material properties (except Poisson’s ratio) and the body force be 

𝐸𝑖(𝑟) = 𝐸0,𝑖 (
𝑟

𝑅𝑖
)

𝑚,𝑖

, 𝛼𝑖(𝑟) = 𝛼0,𝑖 (
𝑟

𝑅𝑖
)

𝑚,𝑖

,   

𝑞𝑟,𝑖 (𝑟) = 𝑏𝑖𝑟𝑛𝑖 , (6) 

where 𝐸0,𝑖, 𝛼0,𝑖, 𝑚, 𝑛, 𝑏𝑖 are constants. The combination of the kinematic, constitutive and equilibrium 

equations (1-6) results in a differential equation for the displacement field. After some manipulation, 

the homogeneous part of the solution is 

𝑢ℎ,𝑖(𝑟) = 𝐴𝑖𝑟
0.5

(𝑚𝑖+1)(1−𝜈𝑖)+𝐶2,𝑖
𝜈𝑖−1 + 𝐵𝑖𝑟

−0.5
(𝑚𝑖+1)(−1+𝜈𝑖)+𝐶2,𝑖

𝜈𝑖−1 , (7) 

where 𝐴𝑖  and 𝐵𝑖  are unknown constants of integration for the i-th layer, furthermore 

𝐶1,𝑖 = √(𝐷1,𝑖𝜈𝑖 − 𝐷3,𝑖)(𝜈𝑖 − 1), 𝐶2,𝑖 = √𝐷1,𝑖𝜈𝑖
2 + 𝐷2,𝑖𝜈𝑖 + 𝐷3,𝑖, 

𝐷1,𝑖 = 𝑚𝑖
2 + 10𝑚𝑖 + 9, 𝐷2,𝑖 = −2𝑚𝑖

2 − 12𝑚𝑖 − 18, 𝐷3,𝑖 = 𝑚𝑖
2 + 2𝑚𝑖 + 9.  (8) 

The inhomogeneous part can be expressed as 

𝑢𝑖𝑛,𝑖(𝑟) =
−𝜈𝑖 − 1

𝐶1,𝑖𝐸0,𝑖
(𝑟

𝐶1+(𝑚𝑖+1)(1−𝜈𝑖)
2(𝜈𝑖−1) 𝐼1,𝑖 − 𝑟

−𝐶1+(𝑚𝑖+1)(1−𝜈𝑖)
2(𝜈𝑖−1) 𝐼2,𝑖) , (9) 

where 

𝐼1,𝑖 = ∫ [2(𝜈𝑖 − 0.5)𝑏𝑖 (
𝜌

𝑅𝑖
)

−𝑚𝑖

𝜌
−𝐶1,𝑖+(3+𝑚𝑖+2𝑛𝑖)(𝜈𝑖−1)

2(𝜈𝑖−1) + 2 (
𝜌

𝑅𝑖
)

𝑚𝑖

𝛼𝑜,𝑖𝐸0,𝑖𝜏1,𝑖(𝜌)] d𝜌

𝑟

𝑅𝑖

 

𝜏1,𝑖(𝑟) = 𝑟
−𝐶1,𝑖+(𝑚𝑖+1)(𝜈𝑖−1)

2(𝜈𝑖−1) 𝑚𝑖𝑇(𝑟) + 0.5
d𝑇(𝑟)

d𝑟
𝑟

−𝐶1,𝑖+(𝑚𝑖+3)(𝜈𝑖−1)

2(𝜈𝑖−1)  (10) 

and 

𝐼2,𝑖 = ∫ [2(𝜈𝑖 − 0.5)𝑏𝑖 (
𝜌

𝑅𝑖
)

−𝑚𝑖

𝜌
𝐶1,𝑖+(3+𝑚𝑖+2𝑛𝑖)(𝜈𝑖−1)

2(𝜈𝑖−1) + 2 (
𝜌

𝑅𝑖
)

𝑚𝑖

𝛼𝑜,𝑖𝐸0,𝑖𝜏2,𝑖(𝜌)] d𝜌

𝑟

𝑅𝑖
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𝜏2,𝑖(𝑟) = 𝑟
𝐶1,𝑖+(𝑚𝑖+1)(𝜈𝑖−1)

2(𝜈𝑖−1) 𝑚𝑖𝑇(𝑟) + 0.5
d𝑇(𝑟)

d𝑟
𝑟

𝐶1,𝑖+(𝑚𝑖+3)(𝜈𝑖−1)

2(𝜈𝑖−1) .  (11) 

The general solution for the i-th layer is 

𝑢𝑖(𝑟) = 𝑢ℎ,𝑖(𝑟) + 𝑢𝑖𝑛ℎ,𝑖(𝑟).    (12) 

To calculate the unknown constants of Eq. (12), the boundary and fitting conditions can be used. There 

are 2 unknown constants for every layer (Ai, Bi, i=1…N), which means that we need 2N equations to 

determine them.  The normal stresses can be calculated according to Eqs. (3,4), furthermore the radial 

displacement field and the radial normal stresses are continuous. To ensure the continuity, we can 

express the following fitting conditions between the layers: 

𝑢𝑖(𝑅𝑖+1) = 𝑢𝑖+1(𝑅𝑖+1), (13) 

𝜎𝑟,𝑖(𝑅𝑖+1) = 𝜎𝑟,𝑖+1(𝑅𝑖+1), 𝑖 = 1 … 𝑁 − 1.   (14) 

Additionally, the boundary conditions at the inner and outer spherical boundary surfaces can be (for 

example) 

𝜎𝑟,1(𝑅1) = −𝑝𝑖𝑛𝑛𝑒𝑟 , 𝜎𝑟,𝑁(𝑅𝑁+1) = −𝑝𝑜𝑢𝑡𝑒𝑟, (15) 

or with kinematic boundary conditions 

𝑢1(𝑅1) = −𝑢𝑖𝑛𝑛𝑒𝑟, 𝑢𝑁(𝑅𝑁+1) = −𝑢𝑜𝑢𝑡𝑒𝑟, (16) 

or the combination of these boundary equations. With these equations we have 2N equations to 

calculate 2N unknown constants of integrations. 

2. Radially graded spherical bodies 

Consider a radially graded and/or multilayered spherical body, in which the material properties are 

arbitrary functions of the radial coordinate and temperature field, furthermore the body force and the 

temperature field are given arbitrary functions of the radial coordinate. 

𝐸(𝑟, 𝑇), 𝛼(𝑟, 𝑇), 𝜈 (𝑟, 𝑇), 𝑏(𝑟), 𝑇(𝑟).  (17) 

To solve this problem, a multilayered approach is used based on the previously derived equations. The 

sphere is divided into N sublayers, in which the conditions described in section 1 are valid. We can use 

a method to approximate the original material distribution with the sublayers. The functions used in 

Eqs. (6) have 2 parameters, which means that we can us for example an integral average sense or the 

material property values at the boundaries of the layers (Ri, Ri+1). The temperature field is given, the 

temperature dependency can be eliminated by substituting a value into the function of the material 

property. In the simplest case the temperature value at the middle of the layer can be used. For the 

Young’s modulus we have 

𝐸(𝑅𝑖, 𝑇𝑚) = 𝐸0,𝑖, 𝐸(𝑅𝑖, 𝑇𝑚) = 𝐸0,𝑖 (
𝑅𝑖+1

𝑅𝑖
)

𝑚,𝑖

, 𝑇𝑚 = 𝑇 (
𝑅𝑖 + 𝑅𝑖+1

2
) , (18) 

from which we can determine the 𝐸0,𝑖; 𝑚, 𝑖 constants for every layer. For the linear thermal expansion 

we can use the same approach, while for the Poisson’s ratio  
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𝜈(𝑟, 𝑇) → 𝜈𝑖 (
𝑅𝑖 + 𝑅𝑖+1

2
, 𝑇𝑚) , (19) 

we have a constant value for every subdomain. 

A similar approach can be used to determine the approximation of the body force: 

  𝑞𝑟(𝑅𝑖) = 𝑏𝑖𝑟𝑛𝑖 , 𝑞𝑟(𝑅𝑖+1) = 𝑏𝑖𝑟𝑛𝑖  →   𝑏𝑖, 𝑛𝑖, 𝑖 = 1 … 𝑁.  (20) 

With these parameters, the problem can be solved. Obviously, with the increase of the number of layers, 

the error decreases.  

3. Numerical examples 

In our first numerical example, we have one spherical layer with the following data: 

𝑁 = 1, 𝑅1 = 0.5 m, 𝑅2 = 0.6 m, 𝜈 = 0.3, 𝐸0 = 2 ∙ 1011 Pa, 𝛼0 = 1.2 ∙ 10−6
1

K
, 𝑚 = 3, 

 𝑝𝑖𝑛𝑛𝑒𝑟 = 50 MPa, 𝑝𝑜𝑢𝑡𝑒𝑟 = 0 MPa, 𝑇(𝑟) = −400 + 3500𝑟3 (K). 

The finite element model was created in Abaqus [23] as an axisymmetric quarter sphere built from 20 

homogeneous, isotropic layers with material distribution Eq. (19) [21]. The layers are perfectly bonded, 

coupled temperature-displacement element type was used. In the first case, the body force is negligible, 

which means that b=0. In this case, the equations presented in [21] can be used to verify the results too. 

Figure 2 shows the displacement, Fig. 3 plots the stress distributions along the radial coordinate.  

The results were in good agreement with the results of the FE simulation (Fig. 2) and of the alternative 

method presented in [21]. The comparison of the dominant hoop stresses can be in Fig. 3, where the 

curve fitting method of [21] was used to smoothen the distribution of the stresses. 

 

Figure 2. The radial displacement of the first case. 
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Figure 3. The normal stresses of the first case. 

In our second case we added a non-zero body force with 𝑏0 = 2 ∙ 108, 𝑛 = 2. Figures 4 and 5 shows the 

results for the displacement and stress fields, which were in good agreement with the FE simulations. 

 

Figure 4. The radial displacement of the second case. 
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Figure 5. The normal stresses of the second case. 

In our last example we considered a stainless steel – silicon nitride functionally graded material. 

 𝑅1 = 0.5 m, 𝑅2 = 0.59 m, 𝑚 = 3, 𝑝𝑖𝑛𝑛𝑒𝑟 = 100 MPa, 𝑝𝑜𝑢𝑡𝑒𝑟 = 0 MPa, 𝑇𝑖𝑛𝑛𝑒𝑟 = 303 𝐾, 𝑇𝑜𝑢𝑡𝑒𝑟 = 733 K, 

the distributions of the material properties are [24]: 

𝑀(𝑟, 𝑇) = (𝑀𝑚 − 𝑀𝑐) (
𝑟 − 𝑅1

𝑅2 − 𝑅1
)

𝑚

+ 𝑀𝑐 , 

𝑀𝑗 = 𝑃𝑗0(1 + 𝑃𝑗1𝑇 + 𝑃𝑗2𝑇2 + 𝑃𝑗3𝑇3), 𝑗 = 𝑚, 𝑐, (21) 

where Table 1 shows the material parameters. 

material 

property 

metal (stainless steel) ceramic (silicon nitride) 

Pm0 Pm1(10-3) Pm2(10-7) Pm3(10-10) Pc0 Pc1(10-3) Pc2(10-7) Pc3(10-11) 

λ(W/mK) 15.39 -1.264 20.92 -7.223 12.723 -1.032 5.466 -7.876 

α (1/K) 12.33·106 0.8086 0 0 3.873·10-6 0.9095 0 0 

E (Pa) 2.01·1011 0.3079 -6.534 0 3.484·1011 -0.307 2.16 -8.946 

ν (-) 0.3262 -0.1 3.797 0 0.24 0 0 0 

Table 1. The material properties for the two-component FGM. 

Figure 6 shows the results of the stress fields (with curve fitting with N=50 layers) which are in good 

agreement in the results of [21]. 
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Figure 6. The normal stresses of the third case. 

Conclusions 

An analytical method was developed to determine the displacement and stress fields within a multi-

layered spherical pressure vessel subjected to combined mechanical and thermal loads based on the 

equations of thermoelastostatics. The material properties and the radial body force within the layers 

are specific power functions of the radial coordinate (except the Poisson’s ratio), the steady-state 

temperature field is an arbitrary function of the radial coordinate. The method is modified to deal with 

the thermoelastic problems of radially graded, multilayered spherical bodies with temperature- and 

arbitrary radial coordinate dependent material properties. The results were verified by FE simulations 

and other methods of the literature. 
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