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Abstract. The most common, and in fact, the most deleterious defects of aluminum casting alloys are the so-called 

double oxide films or bifilms, which have a central role in porosity formation, as they can easily unfurl and inflate 

into pores during the solidification of the alloys. Sr addition is generally used in the foundry industry for the 

modification of the eutectic Si phase of hypoeutectic Al-Si alloys. However, Sr microalloying usually leads to an 

increased pore formation tendency. As bifilms are preferred sites for pore formation, it should be expected that Sr 

additions have a significant effect on the number and/or the structure of double oxide films present in the melt.  In 

this work, the relationship between Sr-concentration and the susceptibility to pore formation has been investigated 

through the evaluation of melt quality of melts which had different levels of Sr. The bifilm content of the melts was 

investigated by the analysis of K-mold specimens and X-ray computed tomography (CT) of reduced pressure test 

(RPT) samples.  It was found that liquid alloys with a higher Sr-concentration had a significantly greater tendency 

to pore formation, which can be explained by the presence of a larger number of bifilm defects in the liquid alloy. 

Introduction 

In order to ensure adequate mechanical properties (tensile strength, elongation, fatigue life, etc.) of 

cast parts, the number of structural defects like porosity and inclusions must be minimized [1-4]. 

Porosity is one of the most common defects, which can lead to inadequate mechanical properties and 

premature failure of cast parts. In the case of aluminum alloys, pore formation is mainly attributed to 

inadequate feeding of solidification shrinkage and the rejection of dissolved hydrogen during the 

solidification of the alloy [5, 6]. However, it was proposed in the literature [7, 8], that double oxide 

films (bifilms) take a central role in pore formation as they can easily open up and inflate into pores 

due to hydrogen diffusion into their inner atmosphere and pressure drop in the mushy zone caused by 

the volumetric shrinkage during solidification (Fig. 1). This hypothesis is supported by experimental 

results [9-13] and comprehensive theoretical calculations [14-16].  
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Figure 1. Schematic illustration of bifilm initiated pore formation. 

Bifilm formation during the melt handling and processing techniques of aluminum alloys is mostly an 

unavoidable process as any disturbance of the melt surface leads to the entrainment of the surface 

oxide layer. In this way, numerous bifilms are introduced to the melts during common foundry 

activities like melting, alloying, fluxing and pouring. However, the characterization of the bifilm 

content of liquid alloys is an especially hard task, since these defects are comprised of vanishingly thin 

oxide layers often as little as 20 nanometers thick [17-19].  

It was highlighted in the authors' previous research work [20, 21], that the double oxide film content 

of liquid aluminum alloys, and thus the melt quality, can be characterized by computed tomography 

(CT) aided porosity analysis of reduced pressure test (RPT) specimens. During solidification under 

reduced pressure, the gas phase trapped between the oxide layers of double oxide films is expanding. 

Furthermore, the solubility of hydrogen in the alloy is lowered due to the reduced hydrogen partial 

pressure. In this way, the H2 precipitation process inside the bifilms and the growth of the created 

pores is accelerated [22]. This allows us the quantitative characterization of bifilm quantity based on 

the number and size of pores found in the RPT samples [23].  

Sr is generally used in the foundry industry to improve the mechanical properties of hypoeutectic Al-Si 

casting alloys, as small amounts of Sr (100-300 ppm, depending on the chemical composition of the 

alloy, cooling rate during solidification and melt cleanliness) causes the modification of the eutectic Si 

particles from a coarse flake-like morphology into a fine fibrous one [24-26]. On the other hand, the 

modification-related research in the past decades demonstrated that Sr additions can lead to increased 

pore formation tendency. The increased volume fraction of porosity and higher pore number density 

in the cast parts is generally associated with Sr microalloying, especially at higher Sr concentrations 

(above 200 ppm) [24, 27-29]. Despite the tremendous amount of research work aiming at the causes 

of this phenomenon, the mechanism underlying the effect of Sr on porosity formation is not fully 

understood. As bifilms are preferred sites for pore formation, it should be expected that Sr additions 

have a significant effect on the number and/or the structure of double oxide films present in the melt 

[30-34]. Therefore, the aim of this research work is to study the effect of different Sr concentrations on 

the double oxide film content and the susceptibility of the alloy to pore formation. 
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1. Experimental Procedure 

1.1. Melt processing 

Melt treatments consisting of rotary degassing with N2 gas and flux addition were executed on 

AlSi7MgCu alloy melts (see Table 1. for concentration ranges of the studied alloy). In order to raise the 

Sr concentration of the melts, in three treatment cycles, 3 pieces of Al-10Sr master alloy rods (with a 

weight of 200 g) were added to the melts. In the case of three additional experiments, no additional 

alloying was made. The quantity of metal treated in one cycle was approximately 1000 kg. The metal 

was melted in a stack smelter then transported by a transport ladle to a resistance heated holding 

furnace where the melt treatments were performed (Fig. 2). The treatment parameters and the 

quantity of flux added (400 g) were always the same for each respective cycle. The N2 gas flow rate 

was 20 L/min; the rotor revolution was 500 RPM during vortex formation and 250 RPM in the 

degassing phase. The treatment time was 12 minutes in each case. The molten metal temperature in 

the holding furnace was maintained between 740 °C and 750 °C. 

 
Figure 2. Al-10Sr master alloy rod addition during melt treatment. 

Si Fe Cu Mn Mg Ti Sr 

6.5 - 7.5 < 0.2 0.45 - 0.58 < 0.1 0.36 - 0.45 < 0.2 0.017 - 0.030 

Table 1. Chemical composition of the studied aluminum alloy (wt. %). 

1.2. Melt quality assessment 

The changes in melt quality were characterized by the microscopic inspection of K-mold specimens 

and X-ray computed tomography (CT) of reduced pressure test (RPT) samples. Utilizing the K-mold 

analysis, the inclusion content of the melt can be quantified. The K-mold specimen itself is a flat bar 

that has four notches which act as fracture points. For the casting of the samples, the so-called K-mold 

was used, which was preheated to 200 °C prior to casting. The fracture surfaces of the specimens were 

inspected with a Zeiss Stemi 2000-C stereomicroscope at a magnification of 25X. Based on the number 

of inclusions found on the fracture surfaces, a K-value was determined (Eq. 1) for each sample, which 

was used for the quantitative characterization of the melt purity. 
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where K is the K-mold value (dimensionless number), n is the number of examined fracture surfaces, 

and S is the total number of inclusions found in n pieces [35, 36]. The surface of the found inclusions 

was investigated with a Zeiss EVO MA 10 scanning electron microscope (SEM) equipped with an 

energy-dispersive X-ray spectroscopy (EDS) system. During each melt preparation, K-mold specimens 

were cast before and after the melt treatments; the number of samples cast at once was 5. 

The RPT samples were cast into steel cups preheated to 200 °C before and following the melt 

treatments. The pressure of the vacuum chamber of the RPT machine was 80 mbar, in which the RPT 

specimens stayed for 6 minutes. The porosity analysis of the RPT samples was executed with 

computed tomography (CT). The radiographic images were made with GE Seifert X-Cube Compact 

225kV apparatus, the acceleration voltage was 135 kV, the tube current was 0.8 mA. During one 

rotation of the samples, 900 images were acquired. The image reconstruction and processing were 

conducted with VGSTUDIO MAX 3.2 software. The segmentation of pores was conducted with the 

VGDefX algorithm, which is a part of the porosity analysis module of the software. For each pore, a 

probability value was evaluated by the software, which depends on the local contrast of voxels. Objects 

with a volume smaller than 0.05 mm3 and pores with a probability value lower than 0.9 were ignored. 

Based on the data acquired during the CT analysis, pore number density and pore volume fraction was 

calculated, which was used for the quality evaluation of the molten alloy. 

1.3. Thermal analysis 

The elemental composition of the alloy was determined with optical emission spectrometry of samples 

cast at each stage of melt preparation. The main drawback of Sr level determination with optical 

emission spectrometry is, that the results do not give information about the form of the Sr in the melt. 

As a result of Sr fading, Sr can be present in the form of such compounds that do not participate in the 

eutectic modification process. However, with the aid of thermal analysis, the quantity of “active” Sr 

which causes eutectic modification can be easily evaluated [24]. The eutectic growth temperature 

(    
      [°C]) which can be determined from the cooling curve and its first derivative with respect to 

time (Fig. 3. (a)), provides adequate information about the eutectic modification level of the alloy. As a 

result of Sr addition, the solidification of the Al-Si eutectic phase begins at a lower temperature with 

larger undercooling. As a consequence, the eutectic nucleation temperature (    
      [°C]) and the 

eutectic growth temperature (    
      [°C]) are lowered. The difference between the eutectic growth 

temperature of an unmodified and a modified alloy       
     [oC]) is directly related to the eutectic 

modification level of the given alloy (Fig. 3. (b)) [37-40]. 

During the experiments, thermal analysis tests were executed before and after the melt treatments. 

The samples were taken by pouring aluminum melt into a cylindrical steel cup (40 mm in diameter, 40 

mm deep). The thermal analysis test cup was preheated to 200 °C. The average weight of the TA test 

samples was 110±10 g. The data for thermal analysis were collected by a data acquisition system 
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linked to a personal computer. The temperatures between 700 °C and 400 °C were recorded for all the 

experiments. The change in eutectic growth temperature (     
      [°C]) was calculated using Eq. 2: 

     
                     

                   
                                                                 

where              
      [°C] is the eutectic growth temperature of the modified alloy determined from the 

cooling curve and its first derivative and                
      [°C] is the eutectic growth temperature of the 

unmodified alloy determined from the chemical composition of the alloy using the following equation 

[39]: 

               
          

    

   
 (                                  )                     

where    ,    ,    ,     and     are the concentrations of elements indicated in the subscripts in 

weight percent. Throughout the investigations, thermal analyses were conducted and the respective 

     
      was determined before and after the melt treatments. 

 

Figure 3. (a) The determination of     
      using the cooling curve and its first derivative [41] and (b) the cooling 

curve of an unmodified (5 ppm Sr) and a modified (250 ppm Sr) alloy [42]. 

2. Results and Discussion 

The results of Sr-content analysis and      
      evaluation with thermal analysis are presented in Fig. 4. 

(a). Fig. 4. (b) shows the relationship between the measured Sr-concentration and      
      values. 

 
Figure 4. (a) Average Sr-concentration and      

      results and (b) the comparison of      
      and Sr-concentration 

values. 
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In the cases, when additional Sr-alloying was made, the average Sr-concentration was 0.0225 wt. % 

(225 ppm). When Sr alloying was omitted, the average Sr-content was 0.0183 wt. % (183 ppm). The 

higher Sr-concentration values resulted in a higher average      
      value, i.e. better eutectic 

modification. On the other hand, the difference is only 0.32 °C, which is not a significant difference in 

the rate of modification. It should be highlighted, that both the Sr-concentration and      
      values 

were lower after the melt treatments, which indicates that the rotary degassing treatments coupled 

with flux addition causes significant Sr-loss, and lowered eutectic modification rate, which is 

consistent with the authors’ previous findings [41]. There were cases when the higher Sr-

concentrations were accompanied by lower      
      values (Fig. 4. (b)). The reason for this 

contradiction is that optical emission spectroscopy measures the total Sr-content of the alloy, 

regardless of the form of Sr. This means that during the analysis, Sr in Sr-containing oxides, nitrides, 

and intermetallic compounds is also taken into account, which Sr does not contribute to the 

modification of the eutectic Si phase and, in this way its effect cannot be detected with thermal 

analysis.  

The average K-values determined based on the evaluation of the fracture surfaces of K-mold samples 

are presented in Fig. 5. (a). Fig. 5. (b) and (c) show two examples of bifilm inclusion found in K-mold 

test pieces. The two layers of these bifilms could be distinguished on the opposing fracture surfaces, 

which confirms the doubled over structure of these defects. In most cases, these types of inclusions 

could be found on the fracture surfaces of the specimens, which supports the claim that these are the 

most common inclusions of aluminum casting alloys. 

 
Figure 5. (a) Results of K-value evaluation, (b) and (c) bifilm defects on the fracture surfaces of K-mold samples. 

Based on Fig. 5. (a), the inclusion content of the treated melts was higher when the average Sr-content 

was 225 ppm. This is an unexpected result, as, before treatment, the average K-value was significantly 

higher in the case of lower Sr-content. This suggests that despite identical treatment parameters, the 

total number of inclusions can be more effectively reduced when the Sr-content is lower. 
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The results of the computed tomographic porosity analysis of RPT specimens are shown in Fig. 6. Both 

pore number density and pore volume fraction results were significantly higher, at a higher Sr-

concentration. Based on the CT images shown in Fig. 6., the difference between the number density 

and spatial distribution of pores is conspicuous, as the specimen cast from the alloy, that had higher 

Sr-concentration, contained significantly more, evenly distributed pores, besides the one central, 

large-sized shrinkage pore, which was present in each sample cast after melt treatments, regardless of 

Sr-content. These results are consistent with the published experimental results [24, 27, 43], as the 

higher volume fraction of porosity and higher pore number density is commonly observed at Sr-

concentrations higher than 200 ppm. 

 
Figure 6. (a) Average pore number density and (b) pore volume fraction results based on CT-analysis with 

representative CT images of RPT samples cast after melt treatments 

Fig. 7. shows the results of EDS-SEM analysis of two, film-like inclusions found on the fracture surfaces 

of K-mold specimens.  
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Figure 7. SEM image and results of EDS analysis of inclusion found on the fracture surfaces of K-mold samples 

Based on its O and Mg content, the wrinkled film-like inclusion shown in Fig. 7. (a) is probably a thin 

spinel (         ) film, as the alloy contains less Mg than 2 wt. %, but significantly more than 0.005 

wt. %, the formation of spinel is more feasible than that of Al2O3 or MgO [44]. On the other hand, the 

inclusion presented in Fig. 7. (b) is more complex regarding both structure and chemical composition. 

The high O- and Sr-concentration indicate the presence of strontium-oxides, which can be observed in 

the SEM image in the form of white particles. These strontium-oxide particles could be found in many 

inclusions, which suggests the intense oxidation of the Sr-content of the alloy. The Na, Ca, K and Cl 

content, however, indicates the presence of flux residues, as alkali- and alkaline-earth metal-chlorides 

are common constituents of fluxes used for inclusion removal during melt treatments [45]. The co-

presence of flux residues and Sr-containing oxides suggests that the application of fluxes can 

contribute to the Sr-loss shown in Fig. 4. (a). This finding is consistent with the authors’ previously 

published results [41]. 

It is generally assumed in the literature, that higher Sr-concentration leads to the increased oxidation 

rate of the alloy, which in turn increases the inclusion content of the metal [32-34]. The 

thermodynamic stability of different oxides can be evaluated by comparing the standard Gibbs free 

energy of oxide formation at different temperatures (Fig. 8). The free energy plots in Fig. 8. were 

calculated with the aid of the reference data in [46]. As can be seen, strontium- and magnesium-oxide 

has a much more negative free energy of formation, than aluminum-oxide, so the oxidation of Mg and 

Sr is preferable above the oxidation of Al. The plots of SrO and MgO indicate that the formation of these 

oxides at the temperatures of 700-800 °C is near equally favorable, but as it was highlighted above, the 
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formation of MgO is not feasible at Mg-levels lower than 2 wt. % and the formation of SrO should be 

expected, as Mg-spinel has a much higher Gibbs free energy of formation, than SrO. In fact, it was 

highlighted by numerous researcher [11, 32-34, 47], that in the presence of Sr, the structure of Al2O3 

bifilms inside the molten alloy gradually transforms, Sr segregates to the surface, then builds in the 

structure of these defects, which results in defects with Sr-containing oxides in them. This 

phenomenon clearly explains the presence of numerous strontium-oxide particles found on the 

surface of film-like inclusions (Fig. 7. (b)), however, it does not give answer regarding the increased 

number of inclusions in the case of 225 ppm average Sr-content, which is indicated by the higher 

average K-value (Fig. 5. (a)) and pore number density inside RPT samples (Fig. 6. (a)). 

 
Figure 8. Gibbs free energy of formation of aluminum-, magnesium-, strontium-oxides and Mg-spinel (calculated per 

mole of oxygen) at different temperatures 

According to Bian et al. [48], the Sr-induced changes in the structure of oxide films cause the loss of 

flexibility of these defects, which in turn brake up more easily into smaller pieces during the pouring of 

the liquid metal, or during the rotary degassing treatments. As these smaller oxide bifilms are 

favorable pore initiation sites, the change in the structure of double oxide films causes increased 

inclusion content and pore number density simultaneously. Campbell [30] highlights the importance of 

another phenomenon which can contribute to increased bifilm content and higher susceptibility to 

pore formation in the case of Sr-modified alloys. Bifilms suspended in the melt are preferred 

substrates for the heterogeneous nucleation of the eutectic silicon phase during the solidification of 

the alloy. Due to this, numerous bifilms are incorporated in the structure of the Al-Si eutectic phase. 

These built-in bifilms cannot open up and create pores during the solidification process. However, in 

the presence of Sr, double oxide films are no longer preferred substrates, and they remain freely 

floating, suspended in the liquid metal. These “free” bifilms can inflate and create pores during 

solidification, which causes increased pore number density and pore volume fraction. The described 

theories can clearly explain the experimental results of this study, however for the experimental 

validation of these phenomena, more research needs to be done.  
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Summary 

Based on the experimental results, the following conclusions can be drawn: 

 In the cases where Sr master alloy additions were made, higher number density and pore volume 
fraction values were evaluated during the CT-analysis of RPT specimens. 

 The higher number of pores in the case of higher Sr concentration can be explained by the 
presence of a larger number of bifilm defects, which is confirmed by the results of the evaluation of 
K-mold specimens. 

 The higher bifilm content is presumably the result of the effect of Sr additions on the oxidation rate 
of the alloy and its effect on the structure of oxides present in the liquid metal. 
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