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Abstract. Electrical discharge machining technology is one of the most precise machining methods. Therefore, even 

the smallest deviation of micro and macro geometry generally has a significant impact on the overall quality of 

products produced by this progressive technology. The quality of the machined surface after Wire Electrical 

Discharge Machining (WEDM) is influenced by a large number of factors, most of which are influenced by the Main 

Technological Parameters (MTP). The aim of the paper was to describe the results of experimental research aimed 

at assessing the impact of MTP for WEDM on the quality of machined surface in terms of geometric accuracy and 

roughness parameters Ra and Rz. The samples were made of high alloyed ledeburitic chromium-molybdenum-

vanadium steel designated EN X155CrVMo12-1 on a Sodick AQ535 electroerosion machine. The tool used was a 

standard compact brass wire  0.25 mm with the designation Elecut Brass CuZn37.  

Introduction 

At present, the trend is focused on continuous improvement of product quality. However, the concept 

of quality includes a number of parameters whose actual values are specified by the customer [1]. One 

of the basic parameters that the customer limits at WEDM is the roughness of the machined surface. 

Another not less important parameter is the geometric accuracy of the machined surface. In addition 

to these basic quality indicators, customers often require the application of materials with specific 

mechanical, physical and chemical properties [2]. Quite often, high-alloy steels, tungsten carbides and 

the like are machined using electrical discharge machining technology. As with other progressive 

technologies and also in WEDM is limited by the extent of use of machined materials [3]. The given 

limit for WEDM is the required minimum electrical conductivity of the workpiece. In general, any 

electrically conductive material can be machined with WEDM technology, with almost no limits to the 

mechanical properties of the material being machined [4]. On the other hand, the advantage of 

applying this technology is that it can machine complicated shapes that virtually cannot be achieved 

with other technology [5,6]. At the same time, the machining of complicated product contours often 

requires in practice a locally limited breaking of the edges or removal of material in a certain sequence 

or in well-defined layers. These specific requirements in a conventional machining technology 

generally require the application of multiple tools and equipment, resulting in a prolongation of 

working. In general, however, the final quality of the machined surface specified by the customer is 
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primarily dependent on the MTP setting for WEDM [7,8]. In doing so, the individual combinations of 

MTP settings determine the resulting intensity of electrical discharges between the workpiece and the 

tool electrode. The magnitude of the intensity of electric discharges has a significant impact not only 

on the roughness of the machined surface, but also on its geometric accuracy [9, 10]. Therefore, the 

experimental research was aimed at assessing the impact of the discharge energy intensity on the 

quality of the WEDM surface when machining tool steel labelled EN X155CrVMo12-1 in terms of the 

parameters of geometric accuracy and roughness of the machined surface. 

1. Material and methods of work 

The SODICK AQ535 electroerosion equipment was used in the production of samples (Fig.1). It is a 

multi-axis CNC equipment that is used in practice for the production of moulds, shearing tools, 

electrodes and the like from very hard materials or products with complicated shapes. The basic part 

of the electroerosion equipment consists of a pulse generator that generates electrical discharges 

between the workpiece and the tool electrode of varying intensity based on the setting of the 

respective MTP combination. In the experiment, the connection of the cathode to the wire tool 

electrode and the anodes to the workpiece were applied.   

 

 

 

 

 

 

 

 

 

 

Figure 1. SODICK AQ535 Electroerosion equipment. 

The samples were immersed in a dielectric liquid based on deionized water during electrical discharge 

machining. The eroded particles from the machined material as well as the wire tool electrode were 

flushed with a stream of dielectric fluid through a nozzle with adjustable flushing pressure. Laboratory 

measuring devices were used to measure the qualitative parameters of the experimental samples 

produced in terms of roughness and geometric accuracy. The Mitutoyo Surftest SJ 400 contact 

profilometer (Fig. 2a) was used to measure the roughness of the eroded surface, which is commonly 

used in practice to measure the roughness, waviness, and primary profile. It is a measuring device with 

automatic radius and inclination compensation. The contact CNC ThomePräzision machine with 

Metrolog XG software was used to measure the deviations of the geometric accuracy of the eroded 

surface (Fig. 2b). 
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a) measurement of machined surface roughness     b) measurement of geometric precision deviation of  

machined surface 

Figure 2. Identification of qualitative indicators of machined area of experimental samples. 

Within the experiment, a brass cutting wire fi 0.25 mm manufactured by ELERO, s. r .o.  labeled 

ELECUT BRASS CuZn37, was used to make samples using WEDM technology. It is a standard type of 

compact wire electrode, which has a relatively high tensile strength Rm = 980N/mm2 with a 63% Cu 

content and 37% Zinc content. This type of wire electrode can provide the required quality of the 

machined surface with high productivity and at the same time favorable economic efficiency of the 

electroerosion process. The samples were made of Böhler tool steel with the designation EN 

X155CrVMo12-1. It is highly alloyed ledeburitic chromium - molybdenum - vanadium steel, which is 

characterized by high abrasion resistance, wear resistance and good toughness. At the same time, it 

has excellent hardenability and dimensional stability. In practice, it is normally used for the 

production of cold working tools such as shearing and stamping tools, punches, industrial 

woodworking knives, etc. It is also suitable for the production of simple symmetrical tools for 

extrusion and pressing, thread rolling tools, but also for the production of very stressed frequent 

moulds. When using conventional machining methods, it has a worse machinability due to higher Cr 

(11.8%) and C (1.55%) contents. The hardness in the annealed state is at the level of max. 255HB, 

which corresponds to a strength of about 860MPa. The maximum achievable hardness after 

martensitic hardening is about 61 to 63 HRC. The basic chemical composition of the used tool steel 

marked EN X155CrVMo12-1 is given in Tab. 1. 

Steel marking 
Percentage of elements (%) 

C Si Mn Cr Mo V P S 
EN ISO X155CrVMo12-1 1.55 0.25 0.35 11.80 0.80 0.95 max 0.030 max 0.030 

Table 1. Basic chemical composition of tool steel with the designation EN X155CrVMo12-1. 

Prior to electrical discharge machining, it was necessary to heat-treat the material of the experimental 

samples to achieve the desired properties and to remove internal stresses [12]. Heat treatment of the 

material of the experimental samples consisted of martensitic hardening and subsequent tempering to 

remove internal stresses. The martensitic hardening was carried out in the form of a two-stage 

heating, in which an austenitization temperature of about 1040°C was applied. Subsequently, the 

material was quenched into oil. Immediately after cooling the material, tempering was performed to 

remove internal stresses at a temperature of about 520°C, at which a secondary hardness of the base 



International Journal of Engineering and Management Sciences (IJEMS) Vol. 5. (2020). No. 2  

DOI: 10.21791/IJEMS.2020.2.12. 

94 

 

material of 56HRC was achieved. If a lower tempering temperature is applied, a higher secondary 

hardness of the base material would be achieved, but at WEDM there would be a risk of releasing 

residual internal stresses in the sample base material. This would distort the machined surface and 

consequently distort the recorded results [13]. In the following Fig. 3 are shown made experimental 

samples.  

 

 

     

a) cylinder 8.0mm  40.0 mm   b) prism 8.0mm  8.0mm  40.0 mm  

Figure 3. Experimental samples of tool steel EN X155CrVMo12-1 made using WEDM technology. 

Due to the specificity of electroerosion technology two types of experimental samples were chosen. 

The first type of experimental sample was cylindrical with a diameter of 8.0mm and a length of 

40.0 mm (Fig. 1a). The second type of experimental sample had the shape of a regular prism with an 

edge of 8 mm and a length of 40.0 mm (Fig. 1b). In both types of experimental samples, combinations 

of MTP settings were applied that corresponded to high, medium and low discharge energy conditions.  

2. Results of experimental measurements 

Experimental samples of both the first and the second type were subjected to the measurement of 

qualitative parameters of the machined surface related to the roughness of the eroded surface and its 

geometric deviations. In case of identification of the qualitative indicator, the roughness of the eroded 

surface, the parameters Ra and Rz were considered. When identifying a qualitative indicator relating 

to the geometric accuracy of the eroded surface, the maximum cylindrical variation was considered for 

the cylindrical sample and the maximum flatness deviation for the prism-shaped sample.  Based on the 

results of experimental measurements, graphical dependencies were subsequently constructed 

describing the impact of the discharge energy intensity on the machined surface quality in terms of 

roughness parameters Ra, Rz (Fig. 4) and geometric deviations of the machined surface (Fig. 5) for 

WEDM, tool steel EN X155CrVMo12-1 with wire electrode  0.25 mm with the designation Elecut 

Brass CuZn37. 
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Figure 4. Effect of discharge energy intensity for WEDM, tool steel EN X155CrVMo12-1 with CuZn37 wire electrode 

on roughness parameters Ra and Rz. 

From the graphical dependencies previously described it can be stated that with increasing intensity 

of discharge energy for WEDM tool steel EN X155CrVMo12-1 with CuZn37 wire electrode, there is a 

slight increase in the value of the Ra parameter and a significant increase in the surface roughness 

value of the Rz parameter. This increase in the case of the parameter Ra represents an increase of 

about 1.0µm and in the case of the parameter Rz an increase of about 4.5 µm. 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of discharge energy intensity on WEDM tool steel EN X155CrVMo12-1 with CuZn37 wire electrode 

on the maximum deviation of roundness and flatness. 

From the above graphical dependencies it can be seen that with increasing discharge energy intensity 

for WEDM, tool steel EN X155CrVMo12-1 with CuZn37 wire electrode, the value of maximum 

deviation increases in both cases. The maximum flatness deviation of the eroded area of the prism-

shaped experimental sample increased more sharply. The maximum circular deviation of the eroded 
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area of the cylindrical experimental sample showed a slight increase. This increase with the maximum 

deviation of the flatness of the eroded surface was about 17.5µm and with the maximum deviation of 

the roundness of the eroded surface it was about 14.5 µm. 

Conclusion 

The aim of the paper was to identify the influence of MTP at WEDM, tool steel EN X155CrVMo12-1 

with CuZn37 wire electrode on the quality of machined surface in terms of macro and microgeometry. 

Microgeometry was assessed on the basis of roughness and macrogeometry parameters based on the 

magnitude of the geometric deviations of the machined surface. The roughness of the eroded surface 

was evaluated for the roughness parameters Ra and Rz, which provide sufficient information on the 

microgeometry of the machined surface. The quality of the machined surface in terms of the 

magnitude of the geometrical deviations of the machined surface was assessed on the basis of the 

maximum flatness and circularity deviations. The maximum deviation of roundness was measured on 

experimental samples in the shape of a cylinder and the maximum deviation of flatness was measured 

on experimental samples in the shape of a regular prism. Based on the results of experimental 

measurements, it was found that with decreasing discharge energy intensity for WEDM, tool steel EN 

X155CrVMo12-1 with CuZn37 wire electrode, which is represented by a combination of MTP settings, 

both qualitative indicators of machined surface significantly improve. However, it should be pointed 

out that too low a value of the intensity of electric discharges during WEDM leads to a substantial loss 

of the electroerosion process, making this process economically inefficient [11,14]. Therefore, it is 

necessary to find a compromise between the quality of the machined surface and the productivity of 

the electroerosion process.  
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