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Abstract: Nowadays orthopaedic implants are mainly fabricated from solid material (titanium alloy). The 

mechanical properties of these implants are much stronger than human bone tissue’s properties, and this 

leads to fixation problems and a short lifetime, but today these problems can be eliminated with the usage of 

metal additive manufacturing. The mechanical properties of the implants can be influenced on demand with 

the variation of the material structure using different sizes and types o f unit cells for building up its 

structure. 

1. Introduction, biomedical basics  

The schematic of a modern hip implant used in today’s world can be seen in Figure 1. The implant is 

fitted into a hole drilled into the femur, using a stem. The material of the implant (usually titanium 

alloy) has much stronger mechanical properties than the human bone tissue. The loads which occur 

during activity get transferred on a path represented by the arrows, therefore as it can be seen, the 

stronger material holds all the load on the upper part, and takes it off of the original bone tissue, up to 

the length of the fitting, where it finally transfers this load to the lower parts of the femur. This means, 

that the upper part of the femur is without load, and the so called “stress shielding” phenomenon 

occurs. The unloaded parts weaken during time, and in the weakened tissue, cracks start to spread due 

to repeating loads. With time, the cracks cause a fraction. This is not good, and has to be avoided. If a 

fraction occurs, a new surgery and implantation is required, which is stressful for the human body, 

especially for the elderly. [1] 
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Figure 1. Schematic of the fitting of a hip implant 

Metal Additive Manufacturing provides a promising solution for the phenomenon, as with its help, we 

can manufacture structures built up of pre – designed unit cells with 20 to 40 micrometers of accuracy, 

which can also be made porous this way. This means, that we can change the mechanical properties of 

the material of the implants according to our needs, depending on the type of unit cell and porosity 

used, therefore there could be a variation that resembles the properties of the human bone tissue. If 

we can develop and use such a structure for manufacturing orthopaedic implants, the penomenon of 

stress shielding could be eliminated, and the fixation and lifetime of implants could be improved. 

2. Materials and methods 

The point of the current research is to test and specify the mechanical properties in the elastic region 

(force – displacement curves) of open cell porous structures manufactured from various types of unit 

cells by Additive Manufacturing. 

2.1 Production of titanium specimen by Additive Manufacturing  

The Department of Mechanical Engineering has already continued research in this field, specifically in 

the testing and specification of the mechanical properties of metal foams, but the foaming is not a 

controllable process, therefore we can not manufacture two identical structures with metal foaming.  

This research takes metal printing under the scope. With metal printing, we can manufacture 

structures according to our needs, that could be reproduced in great numbers, which is the 

precondition of biomedical use. The University of Debrecen has an EOS M290 type 3D printer in the 

Biomechanical Laboratory of the Orthopaedic Clinics, which uses titanium alloy powder as a raw 

material. [2-6] 
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Figure 2. Metal foaming (left) [7] and metal printing (right)  

 

Mechanical properties of the Ti-6Al-4V alloy  

Ultimate Strength (MPa) 1075 

Yield Strength (MPa) 965 

Elastic modulus (GPa) 114,5 

Poisson’s ratio 0,34 

Figure 3. Mechanical properties of the Ti-6Al-4V alloy [3] 

2.2 CAD modelling of specimens 

4 types of specimens were modelled with CAD software according to the ISO 13314 standard. It takes 

many steps to arrive to the simulation of full geometries, therefore standard compression test 

specimens were tested first. (Figure 4) The specification of their mechanical properties was done with 

simulated compression tests. Finite element analyses were done, and the results of these analyses will 

be compared to the results of the compression tests of the manufactured specimens. Refinements to 

the simulation parameters will be made according to these results, if necessary.  

The specimens were created with the following sizes from 4 different types of unit cells: 

 

               

Figure 4. Unit cells (Left) & ISO 13314 standard compression test specimen from cubic unit cell. (Right) 
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3. Linear elastic Finite Element Modelling calculations 

I have taken the specimen which can be seen in Figure 3 under a numerical compression test with the 

help of FEMAP programme. [8-9] The investigated specimen were subjected to prescribed 

displacement at the top surface while normal contact were applied at the bottom and top surfaces. 

[10-14] Due to the size and complexity of the model, the numerical analysis is very costly, therefore 

with acces provided by the University of Nyíregyháza, High Performance Computing was used. Even 

this way, the simulation of the full model did not succeed, due to insufficient amount of RAM.  

To succesfully run the simulations, various simplifications have been used. The analyses were ran on 

the 1/8 slice of the full height model, and the cylinders with 1,5 mm and 3 mm height of the full 

diameter model, which can be seen in figure 5. 

 

Figure 5. Slice (left) and cylinders (middle & right) 

The results of the simulations have been displayed in diagrams. (Figure 6 & 7) 

For comparability reasons, the analyses have been run on solid models also.  



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 4. (2019). No. 4  

DOI: 10.21791/IJEMS.2019.4.9. 

89 

 

              

 
Figure 6. Force – displacement curves of the porous model in the elastic region. 

              

 
Figure 7. Force – displacement curves of the solid model in the elastic region. 
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Conclusion 

As it can be seen in Figure 6 & 7, the simplifications which reduce the specimen’s height cause a 

change in the test results, therefore a simplification like this can not be used to make the simulation 

less hardware demanding. However, with the slice type simplificaton, I’ve come to a different 

conclusion. The results show a similiarity in the curves of the full solid model, and the 1/8 slice of the 

solid model, which means, this might be an option for simplification. I couldn’t achieve results in 

simulating the full porous model yet, due to insufficient amount of RAM in the supercomputer (488 

Gb). 

Another interesting point to note is that the behaviour of the solid model shows to withstand less force 

with the increase of displacement and the increase of height simultanously, whilst the porous model 

can withstand the same amount force with the increase of displacement and height simultanously. 
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