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Abstract. The paper describes a method of speed (velocity) computation, named mixt profile, during a motion upon 

an imposed linear trajectory. The method assures an accurate positioning at the end of motion (movement), in a 

well determinate time lapse. The described method is linked with position vector computation, about a robotic arm.  
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1. About movement of an robotic arm. 

About movement command of a robotic arm [1; 2; 3], it is necessary to define direct and inverse 

cinematics.  A cinematics analyze example of a robotic arm, type RRRRRR, is illustrated in fig.1. 

 
Fig.1. Cinematics analyze of an robotic arm, type RRRRRR. 

The notations in fig.1 define several Cartesian coordinate systems with its axles: OXi ; OYi ; OZi and its 

origins: Oi (i=1..6). The motion of the robotic arm is determinated by six rotation driving cinematics 

couples (d.c.c.) named: Ci (index i goes from 1 to 6; i=1..6); the variable parameters of d.c.c. are named: 

Ɵi (i=1..6) ; there are constant parameters of the robotic arm named: d1 ; a2 ; d4 ; d6 . The orientation of 
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the robotic are is defined by the versors (a versor is a vectors with module equal to 1 value):  ;n


;o


a


 

(the versors are identical with the sense and direction of axles OX6; OY6 and OZ6 [3] (the index 6 

Cartesian coordinate system has the origin in the tool point of the robotic arm (according with the 

Denawitt-Hartenberg convention). According to the Denawitt-Hartenberg convention, a Cartesian 

coordinate system, indexed i, is obtained by homogeneous transformations, from previous one, 

indexed i-1. Those homogeneous transformation are (always in this order): 

1) rotation around OZi-1  axle; 

2) translation along OZi-1  axle;  

3) translation along OXi  axle; 

4) rotation around OXi  axle. 

For a rotation d.c.c. named
i

C , the Cartesian coordinate system indexed i  is obtained from Cartesian 

coordinate system indexed 1i  by homogeny transformations defined with formula that we wrote: 

),(),(),())(,( 11

1

iiiiiiiiii

i OXRotlOXTransaOZTranstOZRotA   

     (1) 

The formula is described by the algorithm: 

 the parameter )(t
i

  is the variable angle of the rotation 
i

C  d.c.c. around axle 1iOZ ; it has different 

values at different moments of time, it a variable parameter; 

 -the constant angle 
i

  has a different from zero value if  axle 1iOX  is not parallel with axle iOX ; it 

express the rotation (around the axle 1iOZ ) of axle  1iOX  to obtain the axle iOX ; it depend of the 

robotic arm construction structure; 

 -the constant distances ia and il has a different from zero value if origin 1iO  is not identical with 

origin iO (its define translations); 

 -the constant angle i  has a different from zero value if the axle 1iOZ  is not parallel with axle iOZ ; 

it express the rotation (around the axle iOX ) of axle  1iOZ  to obtain the axle iOZ ; it depend of the 

robotic arm construction structure. 

The formula that we wrote for a translation d.c.c. is ,: 

),(),())(,(),( 11

1

iiiiiiiii

i OXRotlOXTranstdOZTransOZRotA   

     (2) 

, where the variable parameter is 
)(tdi ; it is the distance between origin 1iO

 and origin iO
 along axle 

1iOZ
 (the others parameters are identical as it was defined  in rel.1). 

For any robotic arm, those two formulas (rel.1 and rel.2) make easy the determination of the direct 

kinematics. It is only a mathematic problem to determine the inverse kinematics formulas.  

2. Example of kinematics analyze.  

About C1 d.c.c of the RRRRRR robotic arm, fig.1, the direct kinematics formula is: 
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)
2

,(),()
2

)(,( 110101

0 
  OXRotaOZTranstOZRotA       (3) 

The direct kinematic determine the +
2


 rotation angle around axle

0
OZ , the 

1
a translation upon axle  

0
OZ  and the 

2


  rotation angle around axle 

1
OX  in concordance with the graphical explications, 

presented in fig.3: 

 
Fig.3. Graphical explication concerning C1 d.c.c. 

 

The described algorithm may be applied for every d.c.c. [3]. 

3. The location matrix of a robotic arm.  

The robotic arm position (location) is defined by the location matrix. It contains axles components of 

position vector, named p


(it defines the position of tool centre point, TCP).  This matrix contains axles 

components of orientation versors: ;n


;o


a


 (orientation versors have the module equal to 1, its 

describe only the orientation (about the robotic arm);) fig.9. 

 

Fig.9. The position and orientations vectors that define the location matrix of an robotic arm. 
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So, the location matrix of the robotic arm, contains the axle components, indexed x; y ; z (along the 

three axles: OX; OY; OZ)  of orientation versors and position vector: 





















1000

zzzz

yyyy

xxxx

i
paon

paon

paon

G            (9) 

The relation between location matrix indexed i (refering to index i Cartesian coordinate system), and 

location matrix indexed i-1, (refering to index i Cartesian coordinate system) is: 

ii

i

i GAG  



1

1                  (10) 

, where matrixs i-1Ai are defined by direct kinematics analyze, for example rel.3-8. According with 

Denawitt-Hartenberg convention, the matrix G6 is the neutral matrix for multiplication; the relation 

between location matrix index 0 and index 6 is: 

6

5

5

4

4
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2

1

1
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3

2

2

1

1

0
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0 AAAAAAGAAAAAAGTGo       (11) 

The inverse kinematics (as a result of direct kinematics) compute the d.c.c. parameters, named )(t
i

 , 

starting with location matrix values. 

4. Acceleration, motion on trajectory and deceleration.  

The speed (velocity) profile of a motion is important for different reasons.  Those reasons may be: 

speed of motion; time of motion; precision of motion; precision for reach the final motion point.  

A linear motion trajectory, for the robotic arm, contains several intermediary positions, named 

waypoints. If the trajectory type is not required, intermediary points may be determined according to 

several conditions; for example it ensures no jerking. Another condition could be a certain programed 

speed.  

About a robotic arm, if the trajectory is imposed (linear or circular), it is computed location matrices 

for intermediary points (waypoints). Considering inverse kinematics, the commands for every d.c.c. of 

the robotic arm are computed, starting with every location matrix that composes the trajectory. For 

example, the formulas for compute position vector components of robotic arm type RRRRRR (fig.1), 

(notations Si; i=1..6, means sine of Ɵi angle and Ci means cosine of same angle, the others notation are 

identical with those explained), are: 

)()(

)(

465321321

2216541654321321

ddCCCSSSS

aCSdSSCdSCCSSSCSpx




     (12) 

)()(

)(

465321321

2216541654321321

ddCSCCCCC

aCCdSSSdSCCSCSCCpy




    (13) 

12246532326543232 )()()( daSddCSCCSdSCCCSSpz     (14) 
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The motion of a robotic arm may contain three stages: 

1)-the acceleration from zero motion speed to the imposed motion speed; 

2)-the motion with imposed motion speed (constant); 

3)-the deceleration from imposed speed to zero. 

Commonly, acceleration to the imposed speed depends on the speed profile that was selected 

(trapezoidal or parabolic), fig.3 and fig.4 (those graphics consider continuous time) 

 

Fig.3. Trapezoidal profile (of speed).   Fig.4. Parabolic profile. 

This paper describes another method about deceleration stage; the method describes another speed 

profile, named mixt profile of speed, fig.5. 

 

Fig.5. Mixt profile. 

4. Acceleration and Deceleration Stages for Mixt Profile of Velocity  

The acceleration variation depends of the maximum acceleration possible, on a sample period of time 

(in a numerical computation system with numerical processor). The numerical process of command 

computation, about a robotic arm movement, is a discrete one. The variation of robotic arm position, 

movements speed, acceleration and deceleration values depend of a discrete variable defined by 

relation: Tk  , where T is the sampling period of time, and k is the number of the sample periods of 

time considered (for example, the variable had the value T10 after ten sampling periods of time from 

the start of movement).  

In the computation described in this paper, it is considered the value of maximum possible 

acceleration in a sample period of time, named amax . About this new method, the acceleration stage for 

mixt speed profile, is described by the relation: 

max0)( akvkTv              (15) 
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The initial value of movement speed is zero, it results 00 v . After every sampling period of time, the 

pozition varies with the values 
max)( akTkTvT  ; this variation may be computed for every 

component of the pozition vector, considering the maximum possible acceleration along every axle, 
named aM (instead of amax) 

MaTk  .  

Considering the initial pozition of the robotic arm defined by those components of pozition vector: 

xp ,0
; 

yp ,0
;

yp ,0
after k  sampling periods of time during the acceleration, the components of the 

position vector (indexed k),  have the values: 

Mxxk aTkpp  ,0,
 

Myyk aTkpp  ,0,
          (16) 

Mzzk aTkpp  ,0,
 

Considering the maximum value of motion speed, named vM , the acceleration ends when 

MM aTkv   , this special value of k, named kA , may be computed.  The maximum value of motion 

speed defines the number of sampling periods of time for the acceleration, named kA: 

MMA aTvk  /            (17) 

The value of kA must be an integer value (the value of kA must be adapted of this rounding, it is the 

next bigger integer value of the computed value). 

It is a different situation for a movement with a programed speed, named vP . Considering its 

component vP,x ; vP,y ; vP,z ;  the described method compute different values for each axle; the  kA 

value is determined by the maximum component (considering each component of programed speed, 

as previous described in rel.10): 

MzPyPxPA aTvvvk  /);;max( ,,,
         (18) 

During the acceleration stage of motion, the position vector components are computed according 

withprevious considerations (usually, the components of initial speed, v0,x ; v0,y ; v0,z  is zero): 

AxxPxxk kvvTkpp /)( ,0,,0,     
Akk ..1,   

AyyPyyk kvvTkpp /)( ,0,,0,           (19) 

AzPzzk kvzvTkpp /)( ,,0,   

In the previous relation k is an integer value, and goes from 1 to kA. The method may be applied for 

any values of initial speed of motion. 

It result the logical conclusion: the movement of a robotic arm, with a programed speed is described 

by the relations (where k starts from kA and goes till is necessary the deceleration stage, defined by the 

value named kD): 

xPxkxk vTpp ,,,1 
 

yPykyk vTpp ,,,1 
          (20) 

zPzkzk vTpp ,,,1 
 



International Journal of Engineering and Management Sciences (IJEMS) Vol. 4. (2019). No. 1  

DOI: 10.21791/IJEMS.2019.1.61. 

501 

 

The start of deceleration stage is defined by the value kD. The speed variation is described by the 

relationship, where aD is the deceleration:  

2)()( kbvkTaTvkTv PDP  Dkk ...1,          (21) 

In the previous relation, the value aD is a variable value and b is a constant value adapted of desired 

characteristics about robotic arm motion. The deceleration decreases at the motion end.  Considering 

the condition: 2
0 DP kbv  and components of speed for each axle, it results the number of sampling 

period of time for the deceleration, named kD: 

 
b

vvv
k

zPyPxP

D

);;max( ,,,
          (22) 

The resulting speed profile is named mixt profile, fig.5 (the graphic considers continuous time).  The 

described method ensures a better precision about stop point proximity. Typically, for a displacement 

with precise positioning at the end of a robotic arm, it can’t be specified the time needed; the mixt 

profile of speed specifies exactly the time needed for the motion with precise positioning at the end. 

The described method, named mixt profile (of speed), was implemented at a flexible welding cellule 

(for the manufacture of mining machinery), and the agreed motion characteristics (with the 

beneficiary) were ok.  

For example, considering a linear trajectory and same orientation of robotic arm (along the 

movement),  considering the values of programed speed: vP = 25 mm/s; vP,x = 3mm/s; vP,y = 

4mm/s; vP,z = 5mm/s; aM = 25mm/s2 and T = 
210

s; an example of computation determines 20Ak  

of sampling periods of time for acceleration process: 

20)/2510/(/)5;4;3max( 22   smmssmmkA
          (23) 

After the determination of kA, the computation about the waypoints of the linear trajectory gets typical. 

Applying the difference analyzing algorithm[3] (about movement on a linear trajectory)  the speed for 

each  axle differs with values: δvx = 3/20 mm/s; δvy = 4/20 mm/s; δvz = 5/20 mm/s; for each sampling 

period of time, and the position differs with values: δpx = 210 3/20 mm; δpy = 210 4/20mm; δpz = 

210 5/20mm. 

The number of sampling period of time for deceleration, considering b = 5mm/900s, is: 

30
900/5

/)5;4;3max(


smm

smm
kD

         (24) 

The computation of waypoints coordinates (during the deceleration) involves speed values:  

22

2

,

,
900

3
3)( kk

k

v
vkTv

D

xP

xPx   
Dkk ...1,   

22

2

,

,
900

4
4)( kk

k

v
vkTv

D

yP

yPy          (25) 

22

2

,

,
900

5
5)( kk

k

v
vkTv

D

yP

zPz           



International Journal of Engineering and Management Sciences (IJEMS) Vol. 4. (2019). No. 1  

DOI: 10.21791/IJEMS.2019.1.61. 

502 

 

For each sampling period of time, the position differs with values:  

px = )(kTvT x     
Dkk ...1,           

δpy = )(kTvT y            (26) 

δpz = )(kTvT z  

The previous example considered a linear trajectory.  

A circular trajectory imposes the computation of waypoints on spherical coordinates (applying the 

difference analyzing algorithm) and conversion on Cartesian coordinates of those values. 

5. Conclusions 

The advantages of  mixt profile (of motion velocity) are: the best precision to reach the end point of  

motion, minimum time of acceleration up to programed motion speed and exact determination of 

motion time. 

The method may have others diverse applications, about motion on a linear or circular trajectory; for 

example about turning or milling process.  
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