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Abstract. The aim of this study is to present a thermal analysis of a permanent magnet synchronous machine based 

on finite element method. The developed model can be used to predict temperature distribution inside the studied 

motor during the rated operation. Electromagnetic computation is carried out with the aid of two 2D finite-element 

(FE) simulations on the cross-section of the PM motor. To analyse the process of heat transfer in an electrical 

machine, empirical correlations are used to describe the convective heat transfer from the different surfaces of the 

PM motor. The heat transfer coefficient is determined using dimensionless numbers and Nusselt number. After the 

loss calculation, the temperatures of the machine are calculated by using 3D finite element method. The results 

obtained by the model are compared with experimental results from testing the prototype electric motor. 

Introduction 

The main objective of our task is to develop a finite element model to analyse the thermal effects in 

electric machines during its various operating conditions. The application allows the predictions of 

simultaneous heat transfer in solid and fluid media with energy exchange between them and to 

determine the heat removal by natural convection from the machine surface. In electrical machines the 

permanent magnets and the insulation in the stator windings are sensitive to temperature variations, 

so a special attention must be paid to this part because the high temperature can affect the durability 

of the stator winding insulation and the efficiency of the permanent magnets. The prediction of the 

temperature distribution inside an electric motor is required at the machine design stage in order to 

control the temperature rise and to avoid overheating of the sensitive parts. The accuracy of the 

thermal model depends on the material properties and the knowledge of losses in electrical machine. 

In order to simplify the thermal model, the windings and the stator are treated as homogeneous 

medium with equivalent thermal parameters and the effective properties to characterize the thermal 

behaviour are calculated based on the volume-weighted average over all constituents. For heat 

transfer through the external surface of the machine, natural convection is considered. On the other 

hand the internal air gap is defined as solid and the effective conductivity to characterize the thermal 

behaviour of the air gap is calculated from empirical correlations. In the developed FEM model, total 

losses including winding loss and iron loss are simulated in Maxwell, ANSYS software and the 

estimated losses are then used as heat sources in the thermal model. This computation is made by 

coupling transient FEA thermal fields with the developed losses model.  
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The proposed thermal model is implemented using the open source Feel++ software [8][9]. Two 

examples are presented to assess the accuracy of the developed coupled solvers and the numerical 

results are compared with the experimental ones, which are obtained from a prototype machine. 

1. Mathematical model and boundary conditions 

This model considers the transient heat transfer between all components of the PM motor including 

the air-gap [1] [2]. Heat transfer within the PM motor is modelled in Feel++ using the heat transfer 

analysis procedure. During the simulation the air gaps inside the machine were defined as a solid 

domain, the heat is mostly transferred by conduction. From the external walls of the motor housing, 

heat was released to the ambient by natural convection. The heat transfer transient model was solved 

in the entire domain consisting of the solid including the air gap in the form [3] [4] [5]: 

   
  

  
   (    )                   (1) 

where  is the thermal conductivity, T is the temperature, pc specific heat capacity,  the density and 

Q  is the heat source. On the external boundary, natural convection was considered: 

  
  

  ⃗ 
  (    )                  (2) 

where n


 is normal vector to the boundary, h is heat transfer coefficient and 0T is the ambient air 

temperature. To solve the heat transfer problem, we need to specify the temperature distribution at 

time zero: 

                     (3) 
The accuracy of the thermal model depends on detailed definition of the geometry, the material 

properties (thermal conductivity, specific heat capacity,…) and the knowledge of losses in electrical 

machine. 

2. Determination of the thermal parameters 

In this study, all regions are considered homogenous and isotropic except stator and windings. For 

these regions, the thermal and physical properties are considered as anisotropic which means that 

properties change with 3-dimensional direction. The effective properties are calculated based on the 

volume-weighted average over all constituents. Afterwards, the model does not take into account the 

effect of temperature on thermal properties. 

2.1. Thermal Conductivity 

2.1.1. Equivalent Thermal Conductivity of the stator 

The stator of an electrical machine is usually composed of a set of very thin metal laminations to 

reduce the eddy current losses caused by the magnetic flux alternation and each lamination being 

insulated from others by a thin layer of varnish. Therefore in this work we use the whole model of 
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equivalent stator to simplify the stator. According to different materials and connections, the 

calculation of equivalent thermal conductivity coefficient is divided into two ways (Figure 1), which 

are series and parallel [6]. 

 

Fig.1. Model of radial and axial heat flow in laminated stator 

 In the radial direction: 

                       (    ) (4) 

where sn is the stacking factor and isoiron  ,  are the thermal conductivities of the iron and 

insulating respectively. The stacking factor represents the ratio of iron volume to the total 
volume of the stator. In this study the stacking factor is considered between 0.95 and 0.98. 

 In the axial direction: 

1. In the case perfect contact: 

Assuming perfect thermal contact at the layer interfaces, the equivalent thermal conductivity is 

          
         

            (    )
 (5) 

2. In the case no-perfect contact: 

The equivalent thermal conductivity is 

          
     

            (    )  (   )
           

 

 
(6) 

where n is the total number of laminations, H
 
is the height of the stator and cR the thermal 

contact resistance [11]. In this study we use the thermal contact resistance data available in 
the literature. 

2.1.2. Equivalent Thermal Conductivity of Windings 

The material of stator windings contains conductors and insulators, such as copper, impregnating 

varnish and insulating varnish (Figure 2).  
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Fig.2. View of the stator windings Fig.3. View of the simplified model of the stator windings 

All conductors in the slot are replaced by an equivalent conductor, the equivalent conductor is shown 

in following Figure 3 and the equivalent cross section is equal to the sum of the cross sections of all 

conductors. And the space between the equivalent copper conductor and the stator is filled by an 

equivalent insulation which consists of the slot insulation, the equivalent air gap layer and the 

equivalent wire isolation. 

In this case the equivalent thermal conductivity of the equivalent insulation is calculated in the axial 

and radial directions using the following formula: 

1. In the radial direction: 

The equivalent thermal conductivity is: 

           
              

    
    

 
    
    

 
    
    

 
(7) 

2. In the axial direction: 

The equivalent thermal conductivity is: 

          
                          

              
 (8) 

where iiA , are the cross sectional area and conductivity of the constituent i . 

2.2. Specific Heat Capacity  

From the law of conservation of energy, the effective specific heat capacity is obtained:  

     ∑   
  
 

 

 (9) 

where micv pii ,...,1,,  are the volume fractions and the specific heat capacity of the constituent i . 

2.3. Effective Density: 

From the law of conservation of energy, the effective density is obtained by: 

    ∑  
  
 

 

 (10) 

where miv ii ,...,1,,  are the volume fractions and the density of the constituent i . 
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2.4. Treatment of the Air Gap 

In the examples studied, the internal air gaps are totally enclosed. During the simulation the air gaps 

inside the machine were defined as a solid domain, the heat is mostly transferred by conduction. The 

air gap has higher thermal conductivity than ordinary air does. As the rotor rotate, the air motion in 

the machine cause turbulence in the air flow. In order to take into account the turbulent air flow in the 

air-gap, effective conductivity is used and is given by the following expression: 

             
         

        (       )
, (11) 

where
eR Reynolds number and the ration between the inner and outer air-gap diameter of the motor. 

2.5. Heat Transfer Coefficients for Free Convection Surfaces 

The heat transfer between the motor outer surface and the surrounding fluid can be characterized by 

the Nusselt number as a function other dimensionless parameters [7]: 

   
  

 
     

  

 
     

   

 
     

      

  
  

Nusselt number Reynolds number Prandtl number Grashof number 

where l is the characteristic dimension of the body, v  is the velocity of the fluid,   is the dynamic 

viscosity of the fluid,   is the volumetric thermal expansion coefficient, g  is the gravity acceleration 

and T is the temperature difference between surface and fluid flow . The heat transfer coefficient 
can be obtained and it is 

  
   

 
             {

        (    )         (                        ) 

        (    )        (                       )
, (12) 

where l is the outer diameter of the motor. 

3. Electromagnetic Losses 

The losses of an electric machine consist of: stator iron losses, stator copper losses, rotor iron losses 

and permanent magnet loss. The mechanical losses are assumed to be negligible in the studied 

machine. Electromagnetic losses consist of two main components: 

I. Winding copper losses: 

Copper losses result from the electrical resistance in the coils of a motor and the current passing 

through it which is dissipated as heat. 

23 IRP CuCu  , (13) 

where I is the current flowing through the coils and CuR is the electric coil resistances.  
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II. Core losses: 

The core loss of electric machine with sinusoidal excitation is commonly computed based on loss 

separation, which breaks the total core loss into hysteresis loss and eddy-current loss components: 

22
).(.. memheh BfkBfkPPP  , (14) 

where ek is the Eddy current loss constant, hk is the hysteresis loss constant, mB is the maximum flux 

density and f is the frequency. 

Electromagnetic computation is carried out with the aid of two 2D finite-element (FE) simulations on 

the cross-section of the PM motor using the Ansys Maxwell. The electromagnetic losses are used as an 

input to the numerical thermal model to find the temperature of the motor. 

4. Numerical Simulations 

4.1. The first example: BMW C1 11 kW electric motor 

4.1.1. Geometry and mesh of the Analysed Motor 

As shown in Fig.4, the electric motor model has a very complicated geometry. Obviously, it is not 

possible to perform simulation on the entire PM motor, due to the large number of volumes and 

calculations required.  Therefore, a part of the PM motor consisting of each part (front cover, stator 

core, stator windings, rotor, permanent magnets, shaft, external housing and the air-gap between 

these components are modelled for this study as shown on the Fig.4. and Fig.5. shows a detailed view 

of the main components of the modelled electric motor. 

 
 

Figure 4. View of the entire motor under 

analysis. 

Figure 5. View of the components that form the electric motor under 

analysis. 

Model detail includes; (1) the front cover,  (2) and (5) the external housing geometry, (3) the stator 

core geometry including slot detail and the stator windings, (4) the rotor geometry including 

permanent magnets and  shaft. In order to simplify the model, the winding region was modelled as a 

solid section and the end winding region was modelled as a torus. This assumption made this motor 

element easier to mesh.  
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Figure 6. A general view of the final mesh. 

As shown in Fig.6, the mesh for the motor and the air-gap was created based on tetrahedral elements, 

as these are the only elements capable of meshing that domain. This grid has approximately 4 000 000 

cells. 

4.1.2. Losses  in BMW C1 motor 

First, a 2D magnetic FE model of the investigated machine is simulated in ANSYS software in order to 

obtain the magnetic field in the active parts of the PM motor. In addition, the copper losses and the 

magnetic core losses are modelled based on the results from the finite element analysis. The computed 

copper and iron losses are presented in Table 1 for current 100 A and angular velocity 2000 rpm. Due 

to periodicity of the motor, only the half of the motor is analyzed in order to reduce the computation 

time. Figures 7-8 show the stator core loss and the rotor core loss. In this study, the heat source is 

assumed to be uniformly distributed within the generating components. 

  

Figure 7. Stator Core loss. Figure 8. Rotor Core loss. 

 

Copper losses in stator windings 162.6  

Stator iron loss 36.41  

Rotor iron loss 41.58  

Permanent magnet Loss 02.55 

Table 1. The heat source in the PM motor (W) 
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4.1.3. Results 

According to the model mentioned above, a transient 3D FE thermal were carried out using the 

FEEL++ library and it was executed on 30 processors. Figs. 9 (a)(b)(c)(d) show the temperature 

distribution of the motor at time t = 1600 s. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure.9 Contours of temperature of the electric motor. 

4.2. The second example: Toyota Prius 2004 electric motor 

4.2.1. Geometry and mesh of the Analysed Motor: 

In this study we perform numerical computation for the heat transfer in Toyota Prius 2004 electric 

motor (see fig.10.). 

  

Figure.10 View of the motor under analysis. Figure.11. A general view of the final mesh. 

The mesh for the motor and the air-gap was created based on tetrahedral elements, as these are the 

only elements capable of meshing that domain. This grid has approximately 7 500 000 cells and Fig. 11 

shows the mesh of the critical parts of the electric machine such the winding, stator, the rotor and the 

magnets. 
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4.2.2. Losses in Toyota Prius 2004 electric motor 

The computed copper and iron losses are presented in Table 2 for current 100 A and angular velocity 

2000 rpm. 

Copper losses in stator windings 436.2 

Stator iron loss 345.1 

Rotor iron loss 26.1 

Permanent magnet Loss 1.9 

Table 2 The heat source in the PM motor (W) 

Due to periodicity of the cross section of the motor, only the eighth of the motor is analyzed. The loss 

calculation results of electromagnetic computation can be seen in Fig. 12. 

 

Figure 12 The stator and rotor core losses. 

4.2.3. Results 

According to the model mentioned above, a transient 3D FE thermal were carried out using the 

FEEL++ library and it was executed on 60 processors. Figs.13.(a)(b)(c)(d) show the temperature 

distribution of different parts of PM motor at time t = 500 s. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 13 Contours of temperature of the electric motor. 
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4. Comparison of Simulated and Experimental Results 

The measurements were performed on the BMW C1 11 kW motor presented in Fig. 14. The 

temperature was measured using a thermocouple type PT100 in contact with the surface of the tested 

motor. Twenty four PT-100 temperature sensors where placed on the permanent magnet motor 

before the test, as shown in Fig. 15. These temperatures were later used to validate the numerical 

model [10]. 

The stator coil is supplied with a constant current of 100A for duration of 1800 seconds and then the 

current is turned off; the rotor was locked in a stand still position. The temperature rise was 

exclusively caused by the resistive heating of the winding. The main goal of the experiment was to 

reach a steady-state condition. 

  

Figure 14 Temperature test set up for the prototype 
machine. 

Figure 15 Schematic layout of the thermocouples on the 
motor 

During the temperature test, the most significant heat source in the tested motor is copper losses, due 

to the electric resistance in the stator coils. The heat generation model utilizes the measured V(t) 

voltage and the measured I(t) current to determine the motor losses from the winding and these 

losses are then used as an input to the numerical thermal model to find the temperature of the motor 

and the other losses are ignored. Fig.16. shows the experimental value of Joule losses variation with 

time. 

 
Figure 16 Experimental value of Joule losses variation with time. 

We solve the problem by taking the ambient temperature 22 C of the motor as the initial temperature. 

Fig. 17 shows a comparison of the simulated and measured temperature variation obtained by a few 

thermocouples [10] 
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The simulated temperatures are very accurate for locations in the motor obtained by thermocouples 1, 

2, 3, 4, 5, 6, 9, 10, 11, 12, but the results from the model are not in good agreement with the results 

obtained by the remaining thermocouples. However, the reasons for the discrepancy between 

transient temperature simulation and measurement need to be explained. The difference transient  

  

  

  

Figure 17 Comparison of the FE simulated and measured temperature variation at different position of PM 

motor. 

temperature simulation and the results of experiments can be attributed to the followings: the glue 

layers between the thermocouples and the prototype motor can decrease heat transfer, the material 

properties were assumed to be independent of temperature and the mechanical losses were are 

neglected. 
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5. Conclusions 

The developed method, electromagnetic field and thermal linked analysis, gives the possibility  to  

evaluate magnetic field intensity, the core losses in the material and the temperature distribution of 

PM motor for different currents and for different geometrical parameters. The developed model 

enables to predict temperature distribution with good accuracy of the critical parts of the electric 

machine such the winding, the rotor and the magnets without using the time-consuming CFD 

simulations. Convection heat-transfer problems are treated with dimensionless numbers and 

empirical correlations are used to determine heat-transfer coefficient. 
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