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Abstract. The X153CrMoV12 ledeburitic chromium steel characteristically has high abrasive wear resistance, due to 

their high carbon and high chromium contents with a large volume of carbides in the microstructure . This steel 

quality has high compression strength, excellent deep hardenability and toughness properties, dimensional stability 

during heat treatment, high resistance to softening at elevated temperatures. The higher hardness of cryogenic 

treated samples in comparison with conventional quenched samples mean lower quantity of retained austenite as at 

samples quenched to room temperature and tempered in similar condition. In the microstructure of samples were 

observed that the primary carbide did not dissolve at 1070°C and their net structure have not been changed during to 

heat treatment. During to tempering at high temperature the primary carbides have become more and more rounded. 

After low tempering temperature in martensite were observed some small rounded carbides also, increasing the 

tempering temperature the quantity of finely dispersed carbides increased, which result higher hardness. The important 

issues in heat treatment of this steels are the reduction or elimination of retained austenite due to cryogenic treatment.  

Introduction 

Tool steels are divided into different category as: cold work, hot work, plastic mould, high speed tool 

steels [1, 2]. In many industrial applications tool steels are subjected to extremely high and variable 

loads. Cold work tool steels are used for fabricating stamping or forming dies, punches, forming rolls, 

knives, slitters, shear blades or any other component for shaping a material into a part or component 

adapted to a definite use. The mechanical properties of these steels can be improved by modifying of 

microstructure. The microstructure can be modified by using different heat treatments technologies. 

Tool steel properties and its wear resistance can be enhanced by optimizing heat treatment 

parameters [3]. This type of steels is generally used in a quenched and tempered state and, therefore, 

the precipitation of secondary carbides and the evolution of the matrix in the steel during tempering 

determine the properties of the steel．The tempering process at unalloyed and low alloyed steels 

usually leads to a decrease in strength due to the precipitation of carbides from carbon that is 

originally in solid solution in the martensite. 
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Increasing the carbon content and alloy content of the steel such as by increasing the austenitising 

temperature and holding time, will produce a harder martensite, but simultaneously lower the Ms and 

Mf temperatures. After Hollomon and Jaffe [4] this temperature can be calculated 

 

Ms = 550-350C%-40Mn%-35V%-20Cr%-17Ni%-10Cu%-10Mo%- 8W% + 15Co% +30Al%        (1). 

Hougardy proposed a correction to this formula [5]: 

  Ms= 0.495Msjh+0.00095M2
sjh +40 (2) 

 

Ms- Corrected martensite start temperature [°C]  

Msjh - Martensite temperature start according to Jaffe & Hollomon [°C]  

Alloy amount-[weight %] 

After Hougardy the volume fraction of martensite can be calculated by 

 VM=1-exp[-k(Ms-T)q] (3) 

 k= 0.36x10-3+0.10x10-4 Ms-0.34x10-6 Ms2+0.32x10-8 Ms3-0.52x10-11 Ms4 (4) 

 q=2.088-0.76x10-2 Ms+0.16x10-4 Ms2-0.90x10-8 Ms3 (5) 

Notation:  
VM -Volume fraction of martensite  

T -temperature [°C] 

Ms - Temperature at which 1% martensite forms [°C] 

 

The presence of high carbon and high alloy content in tool steels lower their characteristic 

temperatures of martensite start and martensite finish [6]. Therefore, conventional hardening 

treatment of these steels fails to convert considerable amount of austenite into martensite often 

leading to unacceptable level of retained austenite in the as quenched structure of these steels. The 

retained austenite is soft and thus adversely affects the desirable properties such as hardness and 

wear resistance [7]. Moreover, the retained austenite is unstable and transforms into martensite at the 

service conditions of tool steels. The freshly formed martensite being untampered is very brittle and 

hence undesirable. Furthermore, transformation of austenite to martensite is associated with 

approximately 4% volume expansion [8], which leads to dimensional changes and distortion of the 

components, even failure in extreme cases [9].  

Therefore, one of the major challenges in the heat treatment of tool steels is to minimize the amount of 

retained austenite or eliminate it.  

Retained austenite content in tool steels can be reduced substantially by cryogenic treatment [10]. 

Multiple tempering and cryogenic treatments improves the strength and hardness of tool steels. 
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 Studies on cryogenically treated tool steels show microstructural changes in the material that can 

influence tool service lives, material properties and productivity significantly. In the last years 

cryogenic treatment is getting increased attention in many tool applications. It is defined as an add-on 

process to conventional heat treatment if added after the conventional quenching and tempering 

process or as supplemental process between quenching and tempering [11]. In order to 

simultaneously increase strength and toughness properties, cold work steel grades may be alloyed to 

improve the morphology, size and distribution of the strengthening carbides [12].  

Cryogenic treatments were also already used in order to improve the wear resistance and toughness 

of these steels [13-16]. Recent research work of Tyshchenko et al. [17] and Gavriljuk et al. [18] clearly 

shows that the full austenite-to-martensite transformation does not occur in high-carbon steels.  

The purpose of this study was to investigate the influence of conventional and of cryogenically 

treatments effects on hardness and microstructure. There were studied the effects of multiple 

tempering on different tempering temperatures. 

Experiments 

The chemical composition of studied specimens is given in Table 1. Each specimen was cut and 

machined from rolled and soft annealed bars, subsequently heat treated in a horizontal vacuum 

furnace with uniform high pressure gas quenching using N2 at a pressure of 5 bar.  

1.2379 C(%) Si(%) Mn(%) P(%) S(%) Cr(%) Mo(%) V(%) 
1,6 0,37 0,41 0,02 0,02 11,3 0,84 1,2 

Table 1. Chemical composition of the steel in this investigation 

The samples were preheated at the rate of 30°C/min up to 650°C and kept at this temperature for 

15 minutes, after than were preheated with the same heating rate up to 900°C and kept it for 15 

minutes. Then for austenitizing, these samples were heated at the rate of 15 minutes and kept at 

austenitizing temperature for 50 minutes. After it the sample were quenched in inert gas to 80°C 

respectively. Three of the samples were treated conventionally and the rest were cryogenically 

quenched (Figure 1). 

 

 a)  b)  c) 
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  d)  e) 

Figure 1. Heat treatments diagrams of specimens a) nr.1 b) nr. 2 c) nr.3 d) nr.4 e) nr.5 

The microhardness testing were executed with Vickers testing machine type Buhler 1105. The 

microstructures of samples were studied by Olympus PMG3 microscope after conventional 

metallographic preparation. For etching were used nital 2%.  

The microstructure of samples in delivered condition consist primary carbides on borders of the 

primary grains in the matrix with spheroid structure as it is showed in Figure 2. The hardness of 

samples in this conditions were 240HV1. 

a)    b) 

Figure 2. Micrograph of the samples in delivery condition: annealed a) N original=100x b) N original=500x 

Results 

In the microstructure of the samples after quenching were observed that the primary carbide did not 

dissolve at 1070°C during to austenitization and their net structure have not been changed during to 

heat treatment. The primary austenite grain sizes were ASTM 8. The primary carbides sizes are 

between 10-50 µm. In etched region small rounded carbides are visible as it showed in Figures 3. 
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a)   b) 

Figure 3. Micrograph of the quenched samples N original=100x b) N original=500x 

The Figure 4 show the microstructure of the samples heat treated conform Figure 1 a). The primary 

carbide shape and distribution is similar to quenched samples. In the etched structure became visible 

small compounds precipitations. The hardness of the matrix is 641 HV1. 

 a)  b) 

Figure 4. Micrograph of samples quenched and tempered at 200°C. a) N original=100x b) N original=1000x 

After tempering at 510°C the matrix of the samples became homogenous as it presented in Figure 5.a). 

Studying with higher resolution in matrix can see retained austenite and tempered martensite near 

small rounded carbides (Figure 5 b). 
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 a)  b) 

Figure 5. Micrograph of quenched and tempered sample at 510°C. a) N original=100x b) N original=1000x 

The microstructure of a specimen tempered three times is show in Figure 6. 

 a)  b) 

Figure 6. Quenched and triple tempered sample micrographs a) N original=100x b) N original=1000x 

The study the microstructure of the conventionally quenched and triple tempered sample by optical 

microscope in high resolution show a dense precipitation of carbides and tempered martensite 

(Figures 6. b). The quantity of retained austenite is reduced compared with the sample tempered one 

time as it can be seen in Figure 6.b) and Figure 5. b). 

The microstructure of cryogenically treated and tempered sample at 510°C is presented in Figure 7. In 

cryogenically treated sampled retained austenite quantity is decreased comparing with conventional 

quenched samples like in Figure 5. b) and Figure 7. b).  The carbides precipitation are fines and their 

distribution are homogeneous in etched zones. 
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 a)  b) 

Figure 7. Microstructure of cryogenically treated and tempered sample at 510°C  

a) N original=100x b) N original=1000x 

Studying the microstructure of cryogenically treated and three time tempered samples (Figure 8) 

were observed partially reducing primary carbides sizes and their morphology became more 

spherical.  The distribution of the precipitated carbides is denser and the martensite are full tempered. 

The retained austenite is minimalized. 

 a)  b) 

Figure 8. Cryogenically treated and triple tempered sample micrographs. a) N original=100x b) N original=1000x 

The microstructure changings after different heat treatment technologies are reflected in the hardness 

values. Austenitizing temperatures, cryogenic temperatures tempering temperatures and the hardness 

evolutions are given in Tab.2.  

Studying the microhardness of etched zones were observed that cryogenically threating increase the 

hardness due to reduction of retained austenite content. In case of conventional quenching increasing 

the tempering temperature to 510°C the hardness has been increased too. The reason is that the 

secondary carbides precipitations begins.  

After the three times tempering the hardness continues to increase due to the secondary carbides 

precipitations. 
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Nr Austenitizing 
temperature 

Cryogenic 
treatment 

Tempering 1 Tempering 2 Tempering 3 

T(°C) T(°C) HV1 T(°C) HV1 T(°C) HV1 

1 1070 (°C) - 200 641 - - - - 

2 1070 (°C) - 510 663 - - - - 

3 1070 (°C) - 510 - 480 - 480 695 

4 1070 (°C) -80 510 746 - - - - 

5 1070 (°C) -80 510 - 480 - 480 738 

Table 2. Heat treatment process and hardness evolution 

The cryogenic treatment consequence is the higher hardness due to retained austenite reduction.  

The best properties were obtained after tempering three times at high temperature.  

Conclusion 

In cryogenically treated sampled retained austenite quantity is decreased comparing with 

conventional quenched samples. Cryogenic treatment accelerate the decomposition of martensite and 

modify the precipitation behaviour of secondary carbides. The reason for increasing hardness due to 

the cryogenic treatment is related to the conversion of the retained austenite to martensite and the 

sediment of the tiny nanometer-sized carbides, and more appropriate distribution of carbides so the 

transformation of retained austenite to martensite and the secondary carbide precipitation are the 

main mechanism responsible for the properties improvement of this steel quality. 
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