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Abstract. The aim of this paper is to introduce some new numerical results on the magneto-thermomechanical 

interaction between heated viscous incompressible magnetic nanofluid and a cold wall in the presence of a spatially 

varying magnetic field. The governing nonlinear boundary layer equations are converted into coupled nonlinear 

ordinary differential equations by similarity transformation. The ODE system is solvable numerically for example 

using higher derivative method. The investigation is focused on the influence of governing parameters 

corresponding to various physical conditions. Numerical results are exhibited for the dimensionless wall skin friction 

and for heat transfer coefficients at the wall, along to distributions of the velocity and the temperature. 

Introduction 

Examination of the heat transfer in boundary layer flow is very important in our daily lives, because 

this phenomenon is observed in nature, where temperature difference between objects within same 

body exists. The boundary layer flow and energy transport phenomenon occur in viscous flows 

between a liquid and a solid body; moreover, it has conquered significant importance due to wide 

range of applications in engineering and modern industrial processes. Some of them are glass blowing, 

polymer extrusion, tinning and annealing of copper wires, chemical industries such as metallurgy 

process like metal extrusion and metal spinning, heat removal from nuclear fuel debris, artificial 

fibres, hot rolling and so on. 

One of flowing fluids is the nanofluids, what are a stable suspension of carrier liquid and nanoparticles. 

These mixtures are made of various metals or non-metals e.g., aluminium (Al), copper (Cu), Silver (Ag), 

and graphite or carbon nanotubes respectively, and the base fluid, which includes water, oil or 

ethylene glycol. Ferrofluid is a special type of nanofluids, in which micron sized colloidal magnetic 

nanoparticles scattered and suspended consistently in a single domain non-magnetic carrier liquid. 

The base fluid for the ferrofluids is usually taken to be oil or water. These fluids are liquid which are 

highly magnetized when an external magnetic field is applied. The flow of ferromagnetic boundary 

layer can be controlled by changing the strengths of external magnetic field.  

Several papers deal with investigating ferrofluids, as they are applicable in enhancing the heat transfer 

rate in several materials and liquids used in advanced technology and industry. It plays an important 

role in the field of chemical and electromechanical devices. Stephen [1] created and characterized the 

first ferromagnetic fluids in 1963 at NASA. Andersson and Valnes [2] studied heat transfer rate in 

ferromagnetic liquids. The effects of thermal gradients and magnetic fields are explored by Neuringer 
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[3]. Albrecht et al. [4] exposed domains for the ferromagnetism and ferromagnetic effects in liquids. 

The free and forced convection of a magnetic fluid over a semi-infinite vertical plate, under the action 

of a localized magnetic field, was numerically examined by Tzirtzilakis et al. [5].  

When magnetizable materials are subjected to an external magnetizing field H, the magnetic dipoles or 

line currents in the material will align and create a magnetization M. 

Nowadays, the magnetohydrodynamic (MHD) flow close to infinite plate is a very popular research 

topic among investigators. The influence of magnetic dipole in a non-Newtonian ferrofluid was 

characterized for an incompressible stretchable cylinder by Awais et al. [6]. The boundary layer heat 

transport flow of multiphase magnetic fluid past a stretching sheet under the impact of circular 

magnetic field was published in [7]. Numerical investigation of magnetohydrodynamic Sisko fluid flow 

over linearly stretching cylinder along with combined effects of temperature depending thermal 

conductivity and viscous dissipation was described by Hussain et al. [8]. 

Neuringer [3] has studied numerically the dynamic response of ferrofluids to the application of non-

uniform magnetic fields with examining the influence of magnetic field on two cases, the two-

dimensional stagnation point flow of a heated ferrofluid against a cold wall and the two-dimensional 

parallel flow of a heated ferrofluid along a wall with linearly decreasing surface temperature. 

The above-mentioned results inspire this present paper, the goal is to examine the static behaviour of 

ferrofluids along a linearly increasing temperature wall in magnetic fields applying similarity 

transformation. Modelled BVP has been solved numerically in Maple by applying higher derivative 

method. The behaviour of physical parameters appearing in the problem are discussed with the help 

of figures. Changing of shear stress and heat transfer at the wall are shown by graphs. 

1. Mathematical formulation 

Consider a two-dimensional steady flow of a viscous, electrically nonconducting and incompressible 

nanofluid, which involves ferromagnetic (e.g. magnetite) particles over a flat surface in the horizontal 

direction seen in Figure 1. 

 

Figure 1. Parallel flow over a flat surface in magnetic field 

The two magnetic dipoles are equidistant from the leading edge. The field is due to two-line currents 

perpendicular to and directed out of the flow plane. 
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The existence of spatially varying fields is required in ferrohydrodynamic interactions [9]. 

The following assumptions are needed: 

 the direction of magnetization of a fluid element is always in the direction of the local magnetic 

field, 

 the fluid is electrically non-conducting and 

 the displacement current is negligible. 

Introducing the magnetic scalar potential   whose negative gradient equals the applied magnetic field, 
i.e.      , the scalar potential can be given by 

 (   )   
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where    denotes the dipole moment per unit length and � is the distance of the line current from the 

leading edge. 

In the boundary layer for regions close to the wall when distances from the leading edge large 

compared to the distances of the line sources from the plate, i.e.     , then one gets 
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where   is the magnetic field. 

The boundary layer equations for a two-dimensional and incompressible flow are based on 

expressing the conservation of mass, continuity, momentum and energy. 

The analysis is based on the following four assumptions [3]: 

 the applied field is of sufficient strength to saturate the ferrofluid everywhere inside the 

boundary layer, 

 within the temperature extremes experienced by the fluid, the variation of magnetization 

with temperature can be approximated by a linear equation of state, the dependence of   

on the temperature   is described by    (    ), where   is the pyromagnetic 

coefficient and    denotes the Curie temperature as proposed in [3, 10], 

 the induced field resulting from the induced magnetization compared to the applied field is 

neglected; hence, the uncoupling of the ferrohydrodynamic equations from the 

electromagnetic equations and 

 in the temperature range to be considered, the thermal heat capacity  , the thermal 

conductivity  , and the coefficient of viscosity   are independent of temperature. 

The governing equations are described as follows 
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where u and v are the parallel and normal velocity components to the plate, the   and   axes are taken 

parallel and perpendicular to the plate, respectively,   is the kinematic viscosity and   denotes the 

density of the ambient fluid, which will be assumed constant. The system (2)-(4) of nonlinear partial 

differential equations is considered under the boundary conditions at the surface (   ) 

                                                               (   )        (   )     (   )                                                            (5) 

with increasing temperature at the wall             and 

                                                                    (   )    ,   (   )                                                                            (6) 

as y leaves the boundary layer (   ) with      , and    is the exterior streaming speed which is 

assumed throughout the paper to be         (with constant   ). Parameter   is related to the 

power law exponent. The parameter       refers to a linear temperature profile and constant 

exterior streaming speed. In case of      , the temperature profile is quadratic, and the streaming 

speed is linear. The value of        corresponds to no temperature variation on the surface. 

Introducing the stream function  , defined by         and         , so equation (2) is 

automatically satisfied, and equations (3) – (4) can be formulated as 
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Boundary conditions (5) and (6) are transformed to  

  
 (   )        

 (   )         (   )                                                            (9) 

                                                        
 (   )           (   )     as    .                                                       (10) 

Now, we have two single unknown functions and two partial differential equations. The system of (8)–

(10) allows us to look for similarity solutions of a class of solutions   and   in the form (see [11, 12]) 
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where   and   satisfy the scaling relation       and for coefficients   and   the relation       

must be fulfilled. The real numbers  ,   are such that       and      , i.e. 
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By considering (11), equations (7) and (8) and conditions (9) and (10) lead to the following system of 

coupled ordinary differential equations  

                                                                                  
   

 
                                                                  (12) 

                                                                      (   )  (
 

 
       )                                                            (13) 

subjected to the boundary conditions  

                                                                    ( )        ( )     ( )                                                               (14) 

                                                                    ( )        ( )                                                                          (15) 

where          is the Prandtl number and             
 ⁄  denotes the parameter of 

ferrohydrodynamic interaction. 

The components of the non-dimensional velocity  ⃗  (     ) can be expressed by  

        ( ), 
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The physical quantities that specify the surface drag and heat transfer rate can be derived. 

Mathematically these quantities are interpreted in the following form 
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where    ( ) denotes the skin friction coefficient and   ( ) stands for the heat transfer coefficient.  

If     and    , equation (12) is equivalent to the well-known Blasius equation  

                                                                             
 

 
                                                                                             (16) 

which appears when analyzing a laminar boundary-layer problem for Newtonian fluids [12-16].  

During our investigation we suppose that the distance x is greater than a. 

Moreover, the fluid is nonelectrically conducting. The model describes the dynamics of heat transfer in 

an incompressible magnetic fluid under the action of an applied magnetic field. 
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2. Numerical method 

There are several computer algebraic software to solve boundary value problems of ordinary 

differential systems ([6], [8], [16]). One of them is the higher derivative method (HDM), which can be 

determined the numerical solution of boundary value problems of coupled strongly nonlinear 

differential equations as (12)-(13). The HDM is implemented in Maple. This method is applicable in the 

numerical analysis of some boundary value problems and ensure the stability by using higher 

derivatives [17]. 

The setting of digits in our case is digits := 15. The boundary value problem is solvable as a first order 

system of 7 equations, where   ( )   ( ) and   ( )   ( )  

The left and right boundary conditions are defined by bc1 and bc2. It is necessary to give the range 

(bc1 to bc2) of the boundary value problem (Range:= [        ]). We have three parameters,  ,   and 

   (e.g., pars:= n=0.0,   =0.0, Pr=10.0). 

The next step is to define the initial derivative in nder and the number of the nodes in nele (nder:= 3; 

nele := 5;). Next settings of the absolute and relative tolerance for the local error are (atol:= 1e-6; rtol:= 

atol /100;). The HDMadapt procedure is applied to determine the approximate numeric solution. The 

simulation gives the figure of all solution functions (from y1 to y5). 

3. Results and discussion 

The numerical investigation of coupled strongly nonlinear differential equations, which described a 

heated ferrofluid flow in magnetic field over a flat surface with boundary conditions is studied. 

In order to shift the governing partial differential equations into ordinary differential equations, firstly 

the system needs to be simplified under usual boundary layer assumptions, after then a set of variable 

similarity transforms are employed. The approximate numerical solution of strongly nonlinear 

simultaneous equations is determined in Maple by an efficient technique with HDM method. 
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Figure 2. Velocity distribution n = 0.1, Pr = 10 Figure 3. Temperature distribution n = 0.1, Pr = 10 

Numerical computations are executed, and different aspects of flow velocity and temperature are 

exhibited on Figs. 2-6 for different parametric conditions. 

    

Figure 4. Velocity distribution n = 0, β = 0.1 Figure 5. Temperature distribution n = 0, β = 0.1 

Figures 2-6. show the influences of parameter   and Pr for the velocity and thermal distributions in 

the boundary layer. If the parameter value      , then there is no effect of   on the velocity and 

thermal distribution solutions. Significant impact on the velocity distribution of   cannot be noticed 

for n=0. The same effect can be seen in case of Prandtl number for the velocity distribution, but there is 

an important effect is in case of the thermal distribution, while for increasing    the boundary layer 

thickness is decreasing. 
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Additionally, the parameters involved in the boundary value problem influence the coefficient of skin 

friction and influence the flow parameters on wall shear stress. The effect of parameter n is presented 

in Figure 6. for the shear stress at the wall, and the impact on the heat transfer at the wall in Figure 7. 

It can be checked from the figures that for the increasing values of n the surface shear stress    ( ) 

decreases, and the effect is same for the heat transfer rate   ( ) also. 

 

Figure 6. The shear stress at the wall β = 0.1, Pr = 10 

 

Figure 7. The heat transfer at the wall β = 0.1, Pr = 10 
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