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Abstract. This paper deals with the numerical analysis of functionally graded spherical bodies subjected to combined 

thermal and mechanical loads. A method is presented to train deep neural networks to approximate the important 

solutions. We outline two approaches for generating the training dataset for a deep neural network, followed by a 

method for creating the neural network itself. Then, through a numerical example, we investigate the axisymmetric 

problems of radially graded spherical bodies (e.g., ideal spherical pressure vessels). Based on the results obtained, we 

evaluate the accuracy of solving the outlined problem using the proposed neural network. 
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Introduction  

With the rapid progression of technology, there is an increasing demand for advanced materials that 

exhibit tailored properties and specialized behaviour. Engineers across diverse disciplines are turning 

to engineered materials as alternatives to conventional metals, which often fall short in meeting the 

complex performance requirements of modern applications. Many engineering challenges call for 

materials that simultaneously possess high hardness, thermal resistance, and ductility - properties that 

are difficult to achieve with traditional materials alone. To enhance such characteristics, metals are 

frequently alloyed with other elements or combined with non-metals to create composite materials. 

These advanced composites typically offer improved mechanical performance and reduced weight 

relative to their constituent phases. However, their broader application is often constrained by issues 

such as delamination, particularly under high-temperature conditions where mismatched thermal 

expansion can induce failure. In response to these challenges, Japanese researchers introduced the 

concept of Functionally Graded Materials (FGMs) in the mid-1980s as part of a hypersonic spacecraft 

development project [1]. FGMs are characterized by a continuous variation in composition and 

microstructure, leading to corresponding gradients in material properties. This smooth transition 

between phases eliminates sharp material interfaces, significantly reducing the risk of failure due to 

thermal or mechanical mismatch. Since their inception, FGMs have been the subject of extensive 

research, with numerous studies investigating their mechanical behaviour, thermomechanical 

responses, and structural performance from various theoretical, numerical, and experimental 

perspectives. 
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Numerous studies have investigated the mechanical behaviour of functionally graded materials (FGMs) 

from a wide range of perspectives. Foundational textbooks have addressed solutions to linear elastic 

problems in homogeneous and non-homogeneous media, as exemplified in [1–3]. In addition, a 

substantial body of literature has introduced analytical, semi-analytical, and numerical approaches for 

solving thermomechanical problems in various structural configurations, including hollow spheres, 

cylindrical shells, beams, and rotating disks. These include papers, such as [4-6]. There are a lot of works, 

that deal with the analysis of functionally graded spherical bodies. Papers [7] and [8] used multilayered 

approach and the transformation of the decoupled thermomechanical system of differential equations 

to solve the problems of radially graded spherical pressure vessels. In [9] the nonlinear temperature 

and stress distributions of the functionally graded sphere are determined by using the pseudospectral 

Chebyshev method, furthermore the material properties vary with temperature as well as thickness 

according to Halpin–Tsai homogenization scheme. 

Nowadays, artificial intelligence methods are gaining increasing ground in engineering sciences, 

particularly the applications of deep neural networks. In the field of functionally graded materials, an 

increasing number of studies are being published that explore the use of such methods. Paper [10] 

introduces a PINN (physics-informed neural networks) framework to solve coupled thermo-mechanics 

for FGMs, predicting displacements and stresses in simple 1 and 2 dimensional problems with higher 

accuracy by embedding physics-based constraints into the network. In the work of Wu et al. [11], the 

analysis of multi-directional functionally graded materials is presented, the effects of an instantaneous 

thermal shock on the thermo-elastodynamic response of a doubly curved panel resting on elastic 

components is investigated using data-driven deep learning. Work of [12] uses Element Free Galerkin 

meshless formulation and higher order shear deformation theory for the static analysis of functionally 

graded plates. This technique estimates the shape function based on moving least squares method and 

utilizes neural networks. Paper [13] predicted the deformation of multi-directional functionally graded 

plates with variable thickness resting on an elastic Winkler foundation using deep neural networks. 

There are a few studies, that investigate special phenomena in spherical bodies, such as [14], which 

investigated the contact between spherical layers using neural networks. 

In this paper functionally graded spherical bodies are investigated which are subjected to combined 

thermal and mechanical loads. We outline two approaches for generating the training dataset for a deep 

neural network. One of them is valid for radially graded spherical bodies, in which the material 

properties are arbitrary functions of the radial coordinate, the other one is finite element method using 

Abaqus CAE [15, 16]. The temperature field can be a given function or described by thermal boundary 

conditions which are the thermal loading of the problem. We have constant pressure exerted on the 

boundary surfaces of the sphere. Our aim is to present a method to solve these problems and generate 

a date set of the solutions. Then we would like to train neural networks with the results coming from 

these calculations. Figure 1 shows the sketch of the problem, the mechanical loads are 𝑝1  and 𝑝2 

(constant pressure values) while 𝑇(𝑟)  denotes the temperature field. The modulus of elasticity is 

denoted by 𝐸 , the Poisson's ratio is 𝜈 , the coefficient of linear thermal expansion is 𝛼 , and 𝜆  is the 

thermal conductivity. In our paper, we focus on one of the most important field variables, the von Mises 

equivalent stress distribution. The finite element software Abaqus CAE (and its scripting environment) 

was used to solve the problems with FEM. To obtain and process the solutions, the Python programming 



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 10. (2025). No. 4. 

DOI: 10.21791/IJEMS.2025.19 

 
59 

language was used. In order to create the deep neural network, Tensorflow with Keras packages were 

utilized. 

 

Figure 1. The sketch of the problem. 

1. Generating the training dataset 

We have multiple approaches to solve the previously discussed thermoelastic problems of spherical 

bodies. When the material of the axisymmetric problem depends only on the radial coordinate of the 

spherical coordinate system (𝑟, 𝜑, 𝜗), the pressures 𝑝1, 𝑝2 are constants, the equilibrium equation can 

be expressed as [1-3] 

d𝜎𝑟

d𝑟
+

2(𝜎𝑟 − 𝜎𝜑)

𝑟
= 0. (1) 

 Considering linearly elastic, isotropic material behaviour, we have Hooke’s law as  

𝜎𝑟 = 𝐵[(1 − 𝜈)𝜀𝑟 + 2𝜈𝜀𝜑 − 𝛼(1 + 𝜈)𝑇(𝑟)], 

𝜎𝜑 = 𝜎𝜗  = 𝐵[𝜈𝜀𝑟 + 𝜀𝜑 − 𝛼(1 + 𝜈)𝑇(𝑟)], 

𝐵 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
,
 

 

(2) 

where 𝜎𝑟  and 𝜎𝜑  are the radial- and tangential normal stresses. In case of linearized problems, the 

kinematic equation of the considered problem has the following nonzero strain components 

𝜀𝑟 =
d𝑢𝑟

d𝑟
, 𝜀𝜑 = 𝜀𝜗 =

𝑢𝑟

𝑟
.  (3) 

After some manipulation we can reformulate the system of differential equations Eqs. (1-3) into the 

following equations 

d
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where 𝑆 = 𝑟2𝜎𝑟 denotes the stress function of the problem [8]. The traction boundary conditions for 

this case are 𝜎𝑟(𝑅1) = −𝑝1, 𝜎𝑟(𝑅2) = −𝑝2, from which we have 𝑆1 = 𝑅1
2𝑝1, 𝑆2 = 𝑅2

2𝑝2. We can get the 

solutions for this system of equation using the combination of three initial value problem, that can be 

solved by several numerical methods, such as the Runge-Kutta method. In the first initial value problem 

we use an arbitrary value for the displacement field 𝑢(𝑅1)
′ = 𝑢1′, the initial value of the stress function 

𝑆1 and we need the value of 𝑆2′. For the second initial value problem we need a solution 𝑆2′′ for the same 

stress function value (as in the first case) and we need a different arbitrary displacement value 𝑢(𝑅1)
′′ =

𝑢1′′. Due to the linearity of the problem, the actual value of the displacement field can be calculated as 

𝑢1 = (𝑢1
′ − 𝑢1

′′)(𝑆1 + 𝑅2
2𝑝2)(𝑆2

′′ − 𝑆2
′)−1 + 𝑢1

′ .  (5) 

We can create the scripts - based on these equations - to solve a range of problems and save the results 

of the calculations. We chose the Python programming language to implement the algorithm. An 

additional advantage of the language is the availability of a wide variety of packages, including those 

related to artificial intelligence methods. 

For a more general approach, we can use commercial finite element software, such as Abaqus CAE. This 

software provides a wide range of tools for solving the problem, parameterizing it, and evaluating the 

results [15]. Custom programs (scripts, [16]) can be written to iterate through a user-defined set of 

problems, solve them, and export selected solution variables to separate files. A control program must 

also be developed to modify input values, monitor the simulation (handling errors and exceptions if 

necessary), and save the solutions. In Abaqus, this is done using the Python programming language. The 

Abaqus CAE preprocessor module includes an integrated Python interpreter, which is suitable for our 

use case. By adopting this approach, geometry, loads, and boundary conditions can be defined 

parametrically and generated programmatically. The Abaqus preprocessor provides access to over 500 

specialized Python classes, methods, and objects, specifically designed to allow customization and 

automation of simulations. In our case, the approximation of functionally graded materials can be done 

multiple ways. We can use user-defined materials and subroutines for the processor module (using 

Fortran language) or we can approach the problem by using scripts and partitioning. We can divide the 

geometry into multiple homogeneous subdomains to approximate the material distribution. The more 

partition we have, the more accurate results we get. For example, we can calculate the material 

properties in the middle point of the partitions and use them for the homogeneous material of the 

section. Then the type of simulation must be picked. We can use the coupled thermoelastic solver of 

Abaqus (coupled temp-displacement step type). From the output database of Abaqus (.odb files) we can 

extract the displacements, strains or stresses we need and write the values into a csv file. We will pick 

the equivalent von Mises stress distribution.  

2. Creation of the deep neural network 

Deep neural networks (DNNs) provide a lot flexibility, when it comes to solving mathematical or 

engineering problems. Let us consider dense, feed-forward, backpropagating neural networks. In this 

paper, we aim to examine the accuracy of the distribution of primary variables predicted by the neural 

networks. To achieve this, the network is designed such that the number of neurons in the output layer 

corresponds appropriately to the number of target values. When using finite element software, variables 
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are extracted from specific points along selected element paths (e.g., nodes or integration points), and 

the number of these points determines the number of output neurons. 

A neural network can be trained to predict multiple primary variables simultaneously, or multiple 

networks can be linked, with each responsible for a different variable. In our selected case study, which 

involves ideal spherical pressure vessels with axisymmetric geometry and loading (𝑝1, 𝑝2, 𝑇1, 𝑇2), we 

investigate the distribution of equivalent (von Mises) stress along the radial coordinate of the spherical 

body. After the convergence analysis of the finite element mesh, in case of the chosen mesh density, the 

radial distance between the inner and outer radii is divided into 43 equal segments, resulting in 44 

evaluation points. Accordingly, the output layer consists of 44 neurons. The number of neurons in the 

input layer is determined by the number of input parameters. If we fix the constituent materials of the 

functionally graded material and we use a one-parameter (𝑚) distribution function, we can have the 

following parameters: [𝑅1, 𝑅2,𝑚, 𝑝1, 𝑝2, 𝑇1, 𝑇2]. In this case the input layer consists of 7 neurons. If we 

investigate 10 values for each parameter, we need to perform 107 simulation in order to create an input 

dataset. This number can be significantly smaller, when we use limitations, such as the maximum von 

Mises stress must be less, than 700 MPa, due to the limitations of Hooke’s law. We can investigate the 

effects of the number of neurons per layer, the number of deep layers, regularisation on the accuracy of 

the results. To create the neural network, we used Python programming language and Tensorflow (with 

Keras). 

During the training of deep neural networks, two major numerical challenges arise, unstable gradients 

and overfitting. The unstable gradient problem includes the vanishing gradient, where gradients 

become very small during backpropagation, hindering weight updates and slowing convergence, and its 

opposite - exploding gradients, where large weights cause overly large updates. To address these, 

effective strategies include proper weight initialization and suitable activation functions, such as Glorot 

initialization with sigmoid, tanh, or softmax activation functions. Another suitable pairings can be ReLU 

activation with He initialization or SELU (scaled ELU) with LeCun initialization, for self-normalizing 

behavior. Batch normalization, gradient clipping, and data normalization (e.g., scaling to [0, 1] or [-1, 1]) 

can also help stabilize training. The second key issue is overfitting, which can be mitigated using a larger 

training data set, changing the structure of the neural network, regularization techniques like L1, L2, or 

dropout. Another tool to counter overfitting is early stopping in simple scenarios, though it is generally 

discouraged as it prevents full training. For the training of the neural networks, the data set is split into 

training and validation sets (70/30). 

In the design of functionally graded spherical pressure vessels, one of the key quantities is the maximum 

value of the equivalent (von Mises: 𝜎𝑒𝑞 = |𝜎𝜑 − 𝜎𝑟|) stress. This value serves as a critical parameter in 

stress-peak-based design approaches. If the neural network is to be calibrated to assist in the design 

process, accurately predicting the maximum stress becomes particularly important, and the choice of 

loss functions during training plays a crucial role. In this context, we intend to investigate several loss 

function variations that differ in how they account for such extremums. 
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3. Investigating radially graded spheres 

In our numerical investigation, we consider a radially graded spherical body, in which the constitutent 

materials (metal and ceramics) are 

𝐸1 = 200GPa, 𝜈1 = 0.31, 𝛼1 = 1.2 ∙ 10−5K−1, 𝜆1 = 44
W

mK
, 

𝐸2 = 320GPa, 𝜈2 = 0.24, 𝛼2 = 4.8 ∙ 10−6K−1, 𝜆2 = 5.5
W

mK
, 

furthermore the material distribution 𝑃 (which can be 𝐸, 𝜈, 𝛼, 𝜆) is described by the following function 

𝑃(𝑟) = (𝑃1 − 𝑃2)(𝑟 − 𝑅1)
𝑚𝑡−𝑚 + 𝑃2. 

where 𝑡 is the wall thickness of the sphere. The dataset we intend to use for the training of the neural 

network is 

𝑅1 = [0.5, 0.8, 1.1, 1.4, 1.3, 1.6, 2];  𝑐 =  [1.002, 1.006, 1.01, 1.03, 1.05, 1.75, 1.1, 1.2],   

𝑤ℎ𝑒𝑟𝑒 𝑅2 = 𝑐𝑅1;  𝑚 =  [0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 200]; 

𝑝1  =  [0, 1, 5, 10, 25, 50, 75, 100, 150, 200]; 𝑝2 = 0; 𝑇1  = 𝑇2 = [0, 20, 40,60, 80, 100, 150, 200, 250]. 

We introduced a parameter 𝑐, which is the ratio of the internal and external radii. We picked values fo 𝑐 

to investigate thin and thick-walled bodies too. The solutions were obtained using the first method 

described, namely the direct solution of the differential Eqs. 4, which was then used to train the neural 

networks using Tensorflow [17]. Since the accuracy of each deep neural network can be noticeably 

affected by the initial parameter settings, the training process was repeated multiple times, and the 

network with the best mean absolute error (MAE) for the equivalent stress distribution was selected. 

We investigated RELU activation with Glorot inicialization and the self-normalizing SELU activation 

functions with LeCun inicialization. The latter showed better results. To train the network, adam 

(adaptive moment estimation) and nadam (Nesterov-accelerated) optimizers were used. We rejected 

solutions where the maximum equivalent stresses were more than 700 MPa. 

The number of layers was varied between 1 and 7, while the number of neurons per layer was set to 

either 256 or 512. When 256 neurons were used per layer, the MAE of the predicted von Mises stress 

distribution was 4.5 MPa for 2 layers, and 3.4 MPa for 5 layers. Beyond 5 layers, the MAE changed only 

marginally, while training times increased significantly. The training loss history of the 5-layer network 

is shown in Figure 2, as a loss (in MPa) – number of training epoch graph. The blue line indicates the 

loss during the training process, while the green line is the validation loss (val_loss). The mean average 

and validation mean average errors showed the same tendencies.  In this case, the loss value plateaued 

after 25 epochs and showed no further improvement. 
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Figure 2. The graph (losses in MPa – number of training epochs) of the training process for the 5 hidden layers. 

Table 1 summarizes the results for networks with 512 neurons per layer. When signs of overfitting were 

observed, dropout regularization and early stopping were applied. In case of 12 layers, the MAE was 

1.56 MPa. 

number of layers 1 2 3 5 7 
mean average error (mae) MPa 28.5 4.1 2.4 1.8 1.65 

Table 1. The results of the deep neural networks. 

 

Figure 3. The comparison of results coming from the neural network (1) and the accurate numerical solution (0). 

Figure 3 shows a comparison of the different solutions coming from the DNN and the origin numerical 

solution for a particular parameter combination. The distributions are in good agreement, when the 

parameter combination is in the range of the training data. Another aspect of the problem is the 

maximum value of the distribution, which is an important data for the design of functionally graded 

structures.  

One possible approach to modifying the loss function is to increase the weights of data points near the 

maximum value. To implement this, a threshold value and a weighting factor are defined. If a given 

variable exceeds the threshold, it is assigned the higher weight during training - meaning the squared 

error for that data point is multiplied by this weight. In doing so, the network is biased toward more 
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accurate estimation of higher values. An alternative approach (let us call this combined) involves 

separately computing the error in the predicted maximum values and incorporating this into the overall 

loss using a weighting factor 𝛽. The final loss is then calculated as a weighted sum of the original loss 

with weight (1-𝛽) and the maximum error with weight 𝛽. The comparison of these cases can be seen in 

Fig. 4, where NW_ref denotes the origin squared loss function, NW_max is the first modified approach, 

NW_combined is the combined (second) custom loss function. 

 
Figure 4. The comparison of the NNs trained with different loss functions. 

As expected, in the case of the NW_max loss function, the maximum stress values were estimated more 

accurately. However, the accuracy of the approximation deteriorated for values approaching zero. In the 

case of the combined loss function (NW_combined), spikes appeared in the distribution functions at 

lower values; nonetheless, the maximum value was still predicted more accurately than in the original 

neural network configuration. The mean average error on the test dataset did not change significantly, 

when we trained the neural network with these loss functions. After testing, the solution coming from 

the neural network were in good agreement with the accurate numerical solution. We got the same 

conclusion when we trained the neural network for other field variables, such as other stress, strain 

coordinates or displacement field. 

Conclusion 

This study focused on the numerical analysis of functionally graded spherical structures subjected to 

combined thermal and mechanical loading. A methodology is proposed for training deep neural 

networks to approximate basic field variables. Two approaches for generating the training dataset are 

presented, followed by the development procedure of the DNN model. A numerical case study involving 

radially graded spherical bodies (such as idealized spherical pressure vessels) is conducted to 

demonstrate the approach. The accuracy of the proposed neural network in solving the outlined 

problem is then assessed based on the obtained results. The results were in good agreement with the 

accurate solutions, even with a few hidden layers the mean average error were a few percent. A clear 

drawback of the method (besides its accuracy) is the significant time required to generate the dataset 

needed for training. Even in the simpler cases, the number of parameters necessitated a large number 

of simulations. However, once the data is available, the calibration of neural networks can support the 

design process (particularly in cases where no closed-form solution or simpler methods exist) and one 

must rely solely on finite element simulations. In addition to the cost of such software tools, the model 
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setup process itself can be time-consuming within these software systems. The use of neural networks 

can reduce this time demand. We also examined the effect of modified loss functions on the solution, 

which may be motivated by specific design objectives, such as the critical importance of the maximum 

stress value. A subsequent question (as future research) may involve identifying the most suitable mesh 

structure for analysing the problem, as well as examining more complex boundary conditions. 
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