International Journal of Engineering and Management Sciences (IJEMS) Vol. 10. (2025). No. 4.
DOI: 10.21791/1JEMS.2025.19

Research article

Thermoelastic Analysis of Functionally Graded
Spherical Bodies Using Deep Neural Networks

DAVID GONCZI

University of Miskolc, Institute of Applied Mechanics, Hungary. david.gonczi@uni-miskolc.hu

Abstract. This paper deals with the numerical analysis of functionally graded spherical bodies subjected to combined
thermal and mechanical loads. A method is presented to train deep neural networks to approximate the important
solutions. We outline two approaches for generating the training dataset for a deep neural network, followed by a
method for creating the neural network itself. Then, through a numerical example, we investigate the axisymmetric
problems of radially graded spherical bodies (e.g., ideal spherical pressure vessels). Based on the results obtained, we
evaluate the accuracy of solving the outlined problem using the proposed neural network.
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Introduction

With the rapid progression of technology, there is an increasing demand for advanced materials that
exhibit tailored properties and specialized behaviour. Engineers across diverse disciplines are turning
to engineered materials as alternatives to conventional metals, which often fall short in meeting the
complex performance requirements of modern applications. Many engineering challenges call for
materials that simultaneously possess high hardness, thermal resistance, and ductility - properties that
are difficult to achieve with traditional materials alone. To enhance such characteristics, metals are
frequently alloyed with other elements or combined with non-metals to create composite materials.
These advanced composites typically offer improved mechanical performance and reduced weight
relative to their constituent phases. However, their broader application is often constrained by issues
such as delamination, particularly under high-temperature conditions where mismatched thermal
expansion can induce failure. In response to these challenges, Japanese researchers introduced the
concept of Functionally Graded Materials (FGMs) in the mid-1980s as part of a hypersonic spacecraft
development project [1]. FGMs are characterized by a continuous variation in composition and
microstructure, leading to corresponding gradients in material properties. This smooth transition
between phases eliminates sharp material interfaces, significantly reducing the risk of failure due to
thermal or mechanical mismatch. Since their inception, FGMs have been the subject of extensive
research, with numerous studies investigating their mechanical behaviour, thermomechanical
responses, and structural performance from various theoretical, numerical, and experimental

perspectives.
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Numerous studies have investigated the mechanical behaviour of functionally graded materials (FGMs)
from a wide range of perspectives. Foundational textbooks have addressed solutions to linear elastic
problems in homogeneous and non-homogeneous media, as exemplified in [1-3]. In addition, a
substantial body of literature has introduced analytical, semi-analytical, and numerical approaches for
solving thermomechanical problems in various structural configurations, including hollow spheres,
cylindrical shells, beams, and rotating disks. These include papers, such as [4-6]. There are alot of works,
that deal with the analysis of functionally graded spherical bodies. Papers [7] and [8] used multilayered
approach and the transformation of the decoupled thermomechanical system of differential equations
to solve the problems of radially graded spherical pressure vessels. In [9] the nonlinear temperature
and stress distributions of the functionally graded sphere are determined by using the pseudospectral
Chebyshev method, furthermore the material properties vary with temperature as well as thickness
according to Halpin-Tsai homogenization scheme.

Nowadays, artificial intelligence methods are gaining increasing ground in engineering sciences,
particularly the applications of deep neural networks. In the field of functionally graded materials, an
increasing number of studies are being published that explore the use of such methods. Paper [10]
introduces a PINN (physics-informed neural networks) framework to solve coupled thermo-mechanics
for FGMs, predicting displacements and stresses in simple 1 and 2 dimensional problems with higher
accuracy by embedding physics-based constraints into the network. In the work of Wu et al. [11], the
analysis of multi-directional functionally graded materials is presented, the effects of an instantaneous
thermal shock on the thermo-elastodynamic response of a doubly curved panel resting on elastic
components is investigated using data-driven deep learning. Work of [12] uses Element Free Galerkin
meshless formulation and higher order shear deformation theory for the static analysis of functionally
graded plates. This technique estimates the shape function based on moving least squares method and
utilizes neural networks. Paper [13] predicted the deformation of multi-directional functionally graded
plates with variable thickness resting on an elastic Winkler foundation using deep neural networks.
There are a few studies, that investigate special phenomena in spherical bodies, such as [14], which
investigated the contact between spherical layers using neural networks.

In this paper functionally graded spherical bodies are investigated which are subjected to combined
thermal and mechanical loads. We outline two approaches for generating the training dataset for a deep
neural network. One of them is valid for radially graded spherical bodies, in which the material
properties are arbitrary functions of the radial coordinate, the other one is finite element method using
Abaqus CAE [15, 16]. The temperature field can be a given function or described by thermal boundary
conditions which are the thermal loading of the problem. We have constant pressure exerted on the
boundary surfaces of the sphere. Our aim is to present a method to solve these problems and generate
a date set of the solutions. Then we would like to train neural networks with the results coming from
these calculations. Figure 1 shows the sketch of the problem, the mechanical loads are p; and p,
(constant pressure values) while T(r) denotes the temperature field. The modulus of elasticity is
denoted by E, the Poisson's ratio is v, the coefficient of linear thermal expansion is «, and 4 is the
thermal conductivity. In our paper, we focus on one of the most important field variables, the von Mises
equivalent stress distribution. The finite element software Abaqus CAE (and its scripting environment)
was used to solve the problems with FEM. To obtain and process the solutions, the Python programming
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language was used. In order to create the deep neural network, Tensorflow with Keras packages were

utilized.

Figure 1. The sketch of the problem.

1. Generating the training dataset

We have multiple approaches to solve the previously discussed thermoelastic problems of spherical
bodies. When the material of the axisymmetric problem depends only on the radial coordinate of the
spherical coordinate system (7, ¢, ), the pressures p;,p, are constants, the equilibrium equation can

be expressed as [1-3]

dov | 20 =%) m
dr r

Considering linearly elastic, isotropic material behaviour, we have Hooke's law as
o, = B[(l — V)& +2ve, —a(l+ v)T(r)],
0, =09 = Blve, + &, —a(1+v)T()],

B = E
T A+vA-2v)

(2)

where o, and o, are the radial- and tangential normal stresses. In case of linearized problems, the

kinematic equation of the considered problem has the following nonzero strain components

du u
g = drr’ £y = &9 = —. (3)

r
After some manipulation we can reformulate the system of differential equations Eqgs. (1-3) into the

following equations
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where S = 720, denotes the stress function of the problem [8]. The traction boundary conditions for
this case are 0,.(R;) = —py, 0,-(R,) = —p5, from which we have S; = R?p;, S, = R3p,. We can get the
solutions for this system of equation using the combination of three initial value problem, that can be
solved by several numerical methods, such as the Runge-Kutta method. In the first initial value problem
we use an arbitrary value for the displacement field u(R;)’ = u,’, the initial value of the stress function
S; and we need the value of S,’. For the second initial value problem we need a solution S," for the same
stress function value (as in the first case) and we need a different arbitrary displacement value u(R;)" =
u,"". Due to the linearity of the problem, the actual value of the displacement field can be calculated as

wy = (w —u)(Sy + REp,) (7 — S +uy. (5)

We can create the scripts - based on these equations - to solve a range of problems and save the results
of the calculations. We chose the Python programming language to implement the algorithm. An
additional advantage of the language is the availability of a wide variety of packages, including those
related to artificial intelligence methods.

For a more general approach, we can use commercial finite element software, such as Abaqus CAE. This
software provides a wide range of tools for solving the problem, parameterizing it, and evaluating the
results [15]. Custom programs (scripts, [16]) can be written to iterate through a user-defined set of
problems, solve them, and export selected solution variables to separate files. A control program must
also be developed to modify input values, monitor the simulation (handling errors and exceptions if
necessary), and save the solutions. In Abaqus, this is done using the Python programming language. The
Abaqus CAE preprocessor module includes an integrated Python interpreter, which is suitable for our
use case. By adopting this approach, geometry, loads, and boundary conditions can be defined
parametrically and generated programmatically. The Abaqus preprocessor provides access to over 500
specialized Python classes, methods, and objects, specifically designed to allow customization and
automation of simulations. In our case, the approximation of functionally graded materials can be done
multiple ways. We can use user-defined materials and subroutines for the processor module (using
Fortran language) or we can approach the problem by using scripts and partitioning. We can divide the
geometry into multiple homogeneous subdomains to approximate the material distribution. The more
partition we have, the more accurate results we get. For example, we can calculate the material
properties in the middle point of the partitions and use them for the homogeneous material of the
section. Then the type of simulation must be picked. We can use the coupled thermoelastic solver of
Abaqus (coupled temp-displacement step type). From the output database of Abaqus (.odb files) we can
extract the displacements, strains or stresses we need and write the values into a csv file. We will pick
the equivalent von Mises stress distribution.

2. Creation of the deep neural network

Deep neural networks (DNNs) provide a lot flexibility, when it comes to solving mathematical or
engineering problems. Let us consider dense, feed-forward, backpropagating neural networks. In this
paper, we aim to examine the accuracy of the distribution of primary variables predicted by the neural
networks. To achieve this, the network is designed such that the number of neurons in the output layer
corresponds appropriately to the number of target values. When using finite element software, variables
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are extracted from specific points along selected element paths (e.g., nodes or integration points), and
the number of these points determines the number of output neurons.

A neural network can be trained to predict multiple primary variables simultaneously, or multiple
networks can be linked, with each responsible for a different variable. In our selected case study, which
involves ideal spherical pressure vessels with axisymmetric geometry and loading (p1, p2, T1, T2), we
investigate the distribution of equivalent (von Mises) stress along the radial coordinate of the spherical
body. After the convergence analysis of the finite element mesh, in case of the chosen mesh density, the
radial distance between the inner and outer radii is divided into 43 equal segments, resulting in 44
evaluation points. Accordingly, the output layer consists of 44 neurons. The number of neurons in the
input layer is determined by the number of input parameters. If we fix the constituent materials of the
functionally graded material and we use a one-parameter (m) distribution function, we can have the
following parameters: [Ry, R, m, p1, 02, T1, T2 ]. In this case the input layer consists of 7 neurons. If we
investigate 10 values for each parameter, we need to perform 107 simulation in order to create an input
dataset. This number can be significantly smaller, when we use limitations, such as the maximum von
Mises stress must be less, than 700 MPa, due to the limitations of Hooke’s law. We can investigate the
effects of the number of neurons per layer, the number of deep layers, regularisation on the accuracy of
the results. To create the neural network, we used Python programming language and Tensorflow (with
Keras).

During the training of deep neural networks, two major numerical challenges arise, unstable gradients
and overfitting. The unstable gradient problem includes the vanishing gradient, where gradients
become very small during backpropagation, hindering weight updates and slowing convergence, and its
opposite - exploding gradients, where large weights cause overly large updates. To address these,
effective strategies include proper weight initialization and suitable activation functions, such as Glorot
initialization with sigmoid, tanh, or softmax activation functions. Another suitable pairings can be ReL.U
activation with He initialization or SELU (scaled ELU) with LeCun initialization, for self-normalizing
behavior. Batch normalization, gradient clipping, and data normalization (e.g., scaling to [0, 1] or [-1, 1])
can also help stabilize training. The second key issue is overfitting, which can be mitigated using a larger
training data set, changing the structure of the neural network, regularization techniques like L1, L2, or
dropout. Another tool to counter overfitting is early stopping in simple scenarios, though it is generally
discouraged as it prevents full training. For the training of the neural networks, the data set is split into
training and validation sets (70/30).

In the design of functionally graded spherical pressure vessels, one of the key quantities is the maximum
value of the equivalent (von Mises: g,, = |a¢, — ar|) stress. This value serves as a critical parameter in
stress-peak-based design approaches. If the neural network is to be calibrated to assist in the design
process, accurately predicting the maximum stress becomes particularly important, and the choice of
loss functions during training plays a crucial role. In this context, we intend to investigate several loss
function variations that differ in how they account for such extremums.
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3. Investigating radially graded spheres

In our numerical investigation, we consider a radially graded spherical body, in which the constitutent
materials (metal and ceramics) are

w
E; = 200GPa,v; = 0.31,a; = 1.2- 107K}, 1, = 44 3

W
E; = 320GPa,v; = 0.24,a, = 48-107°K ™", 2, = 55—,

furthermore the material distribution P (which can be E, v, a, 1) is described by the following function
P(r) = (Py = P)(r = R))™t™™ + P,.

where t is the wall thickness of the sphere. The dataset we intend to use for the training of the neural
network is

R, = [05,0.8,1.1,1.4,1.3,1.6,2]; ¢ = [1.002,1.006,1.01,1.03,1.05,1.75,1.1,1.2],
where R, = cRy; m = [0.001,0.01,0.1,0.5,1,5, 10,50, 100, 200];
p, = [0,1,5,10,25,50,75,100,150,200]; p, = 0;T, =T, = [0,20,40,60,80, 100,150,200, 250].

We introduced a parameter c¢, which is the ratio of the internal and external radii. We picked values fo c
to investigate thin and thick-walled bodies too. The solutions were obtained using the first method
described, namely the direct solution of the differential Eqgs. 4, which was then used to train the neural
networks using Tensorflow [17]. Since the accuracy of each deep neural network can be noticeably
affected by the initial parameter settings, the training process was repeated multiple times, and the
network with the best mean absolute error (MAE) for the equivalent stress distribution was selected.
We investigated RELU activation with Glorot inicialization and the self-normalizing SELU activation
functions with LeCun inicialization. The latter showed better results. To train the network, adam
(adaptive moment estimation) and nadam (Nesterov-accelerated) optimizers were used. We rejected
solutions where the maximum equivalent stresses were more than 700 MPa.

The number of layers was varied between 1 and 7, while the number of neurons per layer was set to
either 256 or 512. When 256 neurons were used per layer, the MAE of the predicted von Mises stress
distribution was 4.5 MPa for 2 layers, and 3.4 MPa for 5 layers. Beyond 5 layers, the MAE changed only
marginally, while training times increased significantly. The training loss history of the 5-layer network
is shown in Figure 2, as a loss (in MPa) - number of training epoch graph. The blue line indicates the
loss during the training process, while the green line is the validation loss (val_loss). The mean average
and validation mean average errors showed the same tendencies. In this case, the loss value plateaued
after 25 epochs and showed no further improvement.

62



International Journal of Engineering and Management Sciences (IJEMS) Vol. 10. (2025). No. 4.

lel4

DOI:10.21791/1JEMS.2025.19

—— loss
mae

—— val_loss

—— val_mae

o
N
=1

T T
80 100

Figure 2. The graph (losses in MPa — number of training epochs) of the training process for the 5 hidden layers.

Table 1 summarizes the results for networks with 512 neurons per layer. When signs of overfitting were

observed, dropout regularization and early stopping were applied. In case of 12 layers, the MAE was

1.56 MPa.

number of layers

1 2

3

5 7

mean average error (mae) MPa | 28.5 | 4.1

2.4

1.8 1.65

Table 1. The results of the deep neural networks.
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Figure 3. The comparison of results coming from the neural network (1) and the accurate numerical solution (0).

Figure 3 shows a comparison of the different solutions coming from the DNN and the origin numerical
solution for a particular parameter combination. The distributions are in good agreement, when the
parameter combination is in the range of the training data. Another aspect of the problem is the
maximum value of the distribution, which is an important data for the design of functionally graded

structures.

One possible approach to modifying the loss function is to increase the weights of data points near the
maximum value. To implement this, a threshold value and a weighting factor are defined. If a given
variable exceeds the threshold, it is assigned the higher weight during training - meaning the squared
error for that data point is multiplied by this weight. In doing so, the network is biased toward more
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accurate estimation of higher values. An alternative approach (let us call this combined) involves
separately computing the error in the predicted maximum values and incorporating this into the overall
loss using a weighting factor S. The final loss is then calculated as a weighted sum of the original loss
with weight (1-f) and the maximum error with weight . The comparison of these cases can be seen in
Fig. 4, where NW_ref denotes the origin squared loss function, NW_max is the first modified approach,
NW_combined is the combined (second) custom loss function.

Mises 1€8
[Pa] | — analytical
neural NW_max
—— neural NW_ref
—— neural_NW_combined

2.0 4

154

1.0+

0.5 1

0.0 1

0.60 0.61 0.62 0.63 0.64 0.65
r [m]

Figure 4. The comparison of the NNs trained with different loss functions.

As expected, in the case of the NW_max loss function, the maximum stress values were estimated more
accurately. However, the accuracy of the approximation deteriorated for values approaching zero. In the
case of the combined loss function (NW_combined), spikes appeared in the distribution functions at
lower values; nonetheless, the maximum value was still predicted more accurately than in the original
neural network configuration. The mean average error on the test dataset did not change significantly,
when we trained the neural network with these loss functions. After testing, the solution coming from
the neural network were in good agreement with the accurate numerical solution. We got the same
conclusion when we trained the neural network for other field variables, such as other stress, strain
coordinates or displacement field.

Conclusion

This study focused on the numerical analysis of functionally graded spherical structures subjected to
combined thermal and mechanical loading. A methodology is proposed for training deep neural
networks to approximate basic field variables. Two approaches for generating the training dataset are
presented, followed by the development procedure of the DNN model. A numerical case study involving
radially graded spherical bodies (such as idealized spherical pressure vessels) is conducted to
demonstrate the approach. The accuracy of the proposed neural network in solving the outlined
problem is then assessed based on the obtained results. The results were in good agreement with the
accurate solutions, even with a few hidden layers the mean average error were a few percent. A clear
drawback of the method (besides its accuracy) is the significant time required to generate the dataset
needed for training. Even in the simpler cases, the number of parameters necessitated a large number
of simulations. However, once the data is available, the calibration of neural networks can support the
design process (particularly in cases where no closed-form solution or simpler methods exist) and one
must rely solely on finite element simulations. In addition to the cost of such software tools, the model
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setup process itself can be time-consuming within these software systems. The use of neural networks

can reduce this time demand. We also examined the effect of modified loss functions on the solution,

which may be motivated by specific design objectives, such as the critical importance of the maximum

stress value. A subsequent question (as future research) may involve identifying the most suitable mesh

structure for analysing the problem, as well as examining more complex boundary conditions.
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