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Abstract. The analysis of variable-thickness plates is much more complicated than that of uniform -thickness plates 

because variable coefficients occur in the equations. In reality, this analysis is of great interest in various 

engineering disciplines, such as civil engineering, aerospace engineering, machine design, and so on. Although there 

is extensive literature on analyses of plates with constant thickness, a rather limited amount of technical literature 

is available on the solutions to problems dealing with plates wi th nonuniform thickness. The reason is that the 

analytical so lutions meet insurmountable difficulties. Besides, the nonlinear analysis process also faces more 

difficulties than the linear analysis of structures. For these reasons, the nonlinear behavior of variable -thickness 

plates based on a finite element procedure is presented in this study. Although the topic is not special, it wi ll help the 

engineer have a specific view of the nonlinear bending of the plate wi th variable thickness. This survey will be based 

on the change in geometrical parameters. Numerical solutions are then presented to verify the simplicity of this 

proposed procedure. 
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Introduction  

Nowadays, variable-thickness plates are used in modern industries where different strengths and 

performances are exhibited in different parts of the product. Therefore, the study of nonlinear bending 

behavior is essential for practical needs. There have been some articles dealing with this issue. The 

literature [1] aimed at nonlinear bending analysis of tapered plates with variable thickness under 3D 

hygrothermal stresses related to Von Kármán theory. The different heat and moisture boundaries 

were also included in [1]. Based on eliminating singular sharp edges and a unified wavelet solving 

methodology, the governing partial differential equations for this structure in a hydro-thermo-

mechanical environment have been given and solved. In [2], the bending problem of a thin plate with 

variable thickness under many kinds of boundary conditions was considered based on the meshless 

method related to weighted moving-least square approximation and the Taylor series. By introducing 

supplementary nodes on the boundary, this could treat the plates of complex shapes. A unified bran-

new wavelet algorithm had been proposed for solving large bending of clamped or simply supported 

variable-thickness plates resting on nonlinear triparametric elastic foundations, as in [3]. The strongly 

nonlinear variable-coefficient governing equations for plates with variable thickness had been 

transformed and solved under the formulation of a thickness-distributed function meeting a circled 

homogeneous Neumann boundary. The dimensionless deflection was obtained by the wavelet 

homotopy approach. Nonlinear bending of prismatic, tapered, pitted, and raised plates was further 

investigated with different parameters of thickness profiles. In [4], by using displacement potential 
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functions, the authors provided the results of bending of transversely isotropic thick rectangular 

plates with variable thickness. The governing partial differential equations were achieved by following 

the separation of variables method and this strategy had no limitation related to the boundary 

conditions or the change of thickness. The literature [5] gave a novel semi-analytical method for 

calculating variable thickness plates with various cutouts. Based on a finite sum of multiplications of 

one-dimensional functions as well as the variational extended Kantorovich method, the deflections 

were achieved. This way overcomed singularities at the cutout areas. The paper [6] introduced the 

bending behavior of variable-thickness thin rectangular plates under hygrothermomechanical 

influence. With the symbol "C" for clamped and "S" for simply supported, the CSCS plate in a 

hygrothermal environment was studied. The exact analytical solutions were given by using both the 

small parameter method and Lévy-type approach and so on. The nonlinear finite element procedure 

has also been mentioned by many documents, as in [7-9]. The authors in [7] gave the Matlab code for 

nonlinear analysis of isotropic plates, as well as in [8,9], based on the smoothed finite element method, 

the geometrically nonlinear behaviors of plates were also presented. This paper presents the simple 

strategy to get a specific view of the nonlinear behavior of variable thickness plates. This will be 

demonstrated in the following sections. 

The next sections of this paper are given as follows. The brief of variable thickness plate and the finite 

element formulation for geometrically nonlinear analysis is presented in Sect.2. The numerical 

solutions are achieved and shown in Sect.3. Some concluding remarks are given in the last section. 

1. Variable Thickness Plate And Finite Element Formulation 

A variable-thickness plate is illustrated in Figure 1. The xy plane coincides with the mid-surface of this 

structure, while the z axis is perpendicular to the mid-surface. 
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Figure 1. The variable thickness plates 

Based on some literatures [7, 11, 12], the displacement field can be expressed as function of mid-

surface translations uo, vo, wo and mid-surface normal rotations θx, θy  
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The strain vector is given by 
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In which the linear membrane strains, the linear bending strains and shear strains are, 
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and the nonlinear membrane strains are, 
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The stress resultant vector is then given, 
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Based on the combined membrane and bending part, the stress-strain relationship is, 
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The stress-strain relationship for shear part is, 
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where k = 5/6 is shear correction factor. The standard four-node quadrilateral isoparametric element 

is used for modeling as in Figure 2. For each element, the displacement vector   is given by, 

   1 2 3 4 , 
T

i oi oi oi xi yiu v w      

     

 (10) 
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Figure 2. The standard four-node quadrilateral isoparametric element with five dofs per node 

The first variation of potential energy leads to 
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in which the variation of strain energy of the plate is presented 
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For non-linear analysis, [7, 9], the element equilibrium equation is 
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where R is residual and F is a generalized forces comes from variation of external work done. The 

element stiffness matrix KS is written as 
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The solution algorithm for the assembled nonlinear equilibrium equations as above is based on 

Newton-Raphson method which need linearization of equations at equilibrium point. The residual 

R(i+1) in the neighbourhood of i by using the Taylor series expansion is  
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where KT is assembled tangent stiffness matrix 
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in which the linear membrane-bending stiffness matrix 
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the nonlinear membrane-bending stiffness matrix 

              
  K B D B B D B B D B

T T T
L NL NL L NL NL

NLmb mb mb m m mb mb m mb m

A

dA

     

 (19) 

the linear shear stiffness matrix 
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and the geometric matrix 
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Furthermore 
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and 
1,2,3,4iN  are shape functions related to the standard four-node quadrilateral isoparametric 

element 

2. Numerical Solutions 

The numerical solutions for nonlinear analysis of variable thickness plates are presented. Firstly, to 

verify the correctness of this procedure to this structure, the simply supported (SSSS) square plate 

with a = 1, E = 10.92e9,  = 0.3 and constant thickness h = a/100 is tested. The curve of maximum 

dimensionless deflections can be obtained by 
minw = w / h  under load parameter    4 4P = /Pa Eh  and 

this curve is compared with the analytical solutions of Levy [10] in Figure 4. As can be seen from this 

figure, very good agreement is achieved for both ways. The first set of results corresponds to the mesh 

6 x 6 and continues with the meshes 10 x 10, 14 x 14 and 18 x 18 as also shown in Figure 3 and Table 1, 

respectively. 

 

   4 4P = /Pa Eh  minw = w / h  

6 x 6 10 x 10 14 x 14 18 x 18 

0 0 0 0 0 

9.157509 0.348498 0.347439 0.347118 0.346982 

18.31502 0.567920 0.562144 0.560549 0.559893 

27.47253 0.719531 0.709567 0.706872 0.705768 

36.63004 0.836178 0.822742 0.819151 0.817686 

45.78755 0.931820 0.915455 0.911117 0.909351 

54.94505 1.013432 0.994543 0.989569 0.987546 

64.10256 1.084980 1.063878 1.058349 1.056104 

73.26007 1.148932 1.125862 1.119845 1.117404 

82.41758 1.206933 1.182095 1.175639 1.173023 

91.57509 1.260133 1.233691 1.226841 1.224068 

100.7326 1.309373 1.281466 1.274257 1.271339 

109.8901 1.355282 1.326030 1.318492 1.315442 

119.0476 1.398349 1.367854 1.360012 1.356842 

128.2051 1.438960 1.407311 1.399188 1.395905 

137.3626 1.477422 1.444699 1.436314 1.432926 

146.5201 1.513989 1.480262 1.471631 1.468145 

155.6777 1.548869 1.514200 1.505340 1.501762 

164.8352 1.582239 1.546684 1.537607 1.533943 

173.9927 1.614246 1.577856 1.568574 1.564828 

183.1502 1.645017 1.607837 1.598362 1.594538 

Table 1. The value of w  with four meshes 
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6 x 6 10 x 10 14 x 14 18 x 18 

Figure 3. Four meshes of square plate 

 

 

Figure 4. The comparison of dimensionless deflection with other literature 

 

 
 

Type 1, SSSS Type 1, CCCC 

18 x 18 
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Type 1, CCCC & SSSS Type 2, CCCC 

Figure 5. The curves of nonlinear bending with two types of plate by changing two geometrical parameters  and  

Finally, based on the above data as well as by changing two geometrical parameters  and , the 

nonlinear behavior of variable thickness plates can be seen in Figure 5. For two kinds of boundary 

condition, fully simply supported (SSSS) and fully clamped (CCCC), an increase in these geometrical 

values increases the stiffness of the plate, resulting in a decrease in nonlinear deflection, respectively. 

From the above examples, it can be concluded that the present approach to the mechanical problem is 

reliable for analysing nonlinear behaviour of the variable thickness plate in terms of the bending 

problem and extending to others in future. 

Conclusions  

The analysis of variable-thickness plates is much more complicated than that of uniform-thickness 

plates because variable coefficients occur in the equations. In reality, this analysis is of great interest in 

various engineering disciplines. Although there is extensive work on the analysis of plates with 

constant thickness, a rather limited amount of technical investigation is available on the solution to 

variable-thickness plates. The reason is that the analytical solutions meet insurmountable difficulties. 

Besides, the nonlinear analysis process also faces more difficulties than the linear analysis of 

structures. For the above reasons, this paper is presented and deals with the nonlinear behavior of 

variable-thickness plates based on a simple approach related to the finite element method. The finite 

element consists of five degrees of freedom per node, which includes three displacements and two 

rotations. The computational approximation of this procedure is verified by comparing the obtained 

results with the results in other literature. The effect of the factor related to thickness on deflections is 

discussed. The success of the present flat four-node element provides a further demonstration of 

efficient flat elements for nonlinear analysis. The paper also helps to supplement the knowledge of 

engineers in design. 
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