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Abstract. In this paper a detailed analysis is given for the pure bending problem of curved beams. The material of the 

curved beam is homogenous isotropic linearly elastic. The mantle of the curved beam is stress free and there is no 

body force on the curved beam. The plane of the curvature of the beam is the plane of sy mmetry for the whole beam.  

Paper gives the expressions of circumferential and radial normal stresses. A strength of material approach is used to  

derive the governing equations. A numerical example illustrates the application of the presented solutions.  
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Introduction 

Figure 1 shows the considered curved beam and its cross section. 

 

Figure 1. Curved beam loaded by bending moment.  

The curved beam occupies the space domain 𝐵  

𝐵 = {(𝑟, 𝜑, 𝑧)| 𝑟𝑖 ≤ 𝑟 ≤ 𝑟0, −
𝑡(𝑟)

2
≤ 𝑧 ≤

𝑡(𝑟)

2
, −𝛼 ≤ 𝜑 ≤ 𝛼}.                                  (1) 

The cross section of the beam is denoted by 𝐴 and the boundary curve of 𝐴 is 𝜕𝐴. It is evident that  

𝜕𝐵 = {(𝑟, 𝑧) ∈ 𝜕𝐴, −𝛼 ≤ 𝜑 ≤ 𝛼}.                                                            (2) 

It is assumed that the cross section is symmetric, and it remains plane and just rotates about the neutral 

axis as in the case of straight beam. The significant stress component is the hoop stress 𝜎𝜑. Several 
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textbooks deal with the elastic curved beam, it is a usual chapter the mechanics of curved beam in books 

of mechanics of solids [1,2,3,4]. In this paper a detailed analysis is given which deals with the 

determination of the radial stresses too. 

1. Governing equations for stresses 

The formulation of the governing equations are given in cylindrical coordinate system 𝑂𝑟𝜑𝑧. The unit 

vectors of the cylindrical coordinate system are 𝒆𝑟 , 𝒆𝜑, 𝒆𝑧  (see Figure 1). The solution is based on the 

following displacement field [6] 

𝒖(𝑟, 𝜑, 𝑧) = 𝑈(𝜑)𝒆𝑟 + (𝑟𝜙(𝜑) +
𝑑𝑈

𝑑𝜑
) 𝒆𝜑,                                                   (3) 

where 𝒖  is the displacement vector, 𝑈 = 𝑈(𝜑)  is the radial displacement, 𝜙 = 𝜙(𝜑)  is the cross-

sectional rotation. Application of the strain-displacement relationships we obtain [1,2] 

𝜀𝑟 = 𝜀𝑧 = 𝛾𝑟𝜑 = 𝛾𝑧𝜑 = 0,                                                              (4) 

𝜀𝜑 =
1

𝑟
(

𝑑2𝑈

𝑑𝜑2 + 𝑈) +
d𝜙

d𝜑
 .                                                             (5) 

Here 𝜀𝑟 ,𝜀𝜑 and 𝜀𝑧 are the normal strains; 𝛾𝑟𝜑, 𝛾𝑧𝜑 and 𝛾𝑟𝑧 are the shearing strains. Hooke’s law gives the 

result for the hoop stress 𝜎𝜑  

𝜎𝜑 = 𝐸 (
𝑊

𝑟
+ 𝜗) .                                                                      (6) 

where  

𝑊 = (
𝑑2𝑈

𝑑𝜑2 + 𝑈) , 𝜗 =
d𝜙

d𝜑
.                                                             (7) 

It is evident in the case of pure bending 𝑊 and 𝜗 do not depend on the polar angle 𝜑. The position of the 

neutral axis is determined by the radius 𝑅. From formula (6) we obtain 

𝑊 = −𝑅𝜗,                                                                               (8) 

and 

𝜎𝜑 = 𝐸 (1 −
𝑅

𝑟
) .                                                                      (9) 

The normal stress resultant 𝑁 is computed as 

𝑁 = ∫ 𝜎𝜑 d𝐴

𝐴

= 𝐸 [𝐴 − 𝑅 ∫
d𝐴

𝑟𝑨

] 𝜗.                                                  (10) 

Since 𝑁 = 0, we have 

𝑅 =
𝐴

∫
d𝐴
𝑟

=
∫ 𝑡(𝑟)d𝑟

𝑟0

𝑟𝑖

∫
𝑡(𝑟)

𝑟
d𝑟

𝑟0

𝑟𝑖

.                                                                             (11) 
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The bending moment in terms of 𝜗 is as follows 

𝑀 = ∫ 𝑟𝜎𝜑d𝐴

𝐴

= 𝐸 (∫ 𝑟 𝑡(𝑟) d𝑟

𝑟0

𝑟𝑖

− 𝑅 ∫ 𝑡(𝑟) d𝑟

𝑟0

𝑟𝑖

) 𝜗 = 𝐸𝐴(𝑟𝑐 − 𝑅)𝜗 = 𝐸𝐴𝑒𝜗,               (12) 

that is 

𝜗 =
𝑀

𝐸𝐴𝑒
,     𝑒 = 𝑟𝑐 − 𝑅,        𝑟𝑐 =

1 ∫ 𝑟 d𝐴𝐴

𝐴
.                                                                  (13) 

From the Cauchy inequality relation 

∫ (
1

√𝑟
)

2

d𝐴

𝐴

∫ (√𝑟)
2

d𝐴

𝐴

≥ (∫
1

√𝑟
√𝑟 d𝐴

𝐴

)

2

                                                     (14) 

it follows that 

𝑅 ≤ 𝑟𝑐 .                                                                                            (15) 

Combination of equation (9) with equation (13) gives 

𝜎𝜑 =
𝑀

𝐴𝑒
(1 −

𝑅

𝑟
).                                                                                   (16) 

The hoop stress resultant 𝑁𝜑 is defined as 

𝑁𝜑(𝑟) = 𝑡(𝑟)𝜎𝜑(𝑟) =
𝑀 𝑡(𝑟)

𝐴 𝑒
(1 −

𝑅

𝑟
).                                                               (17) 

According to the equilibrium equation  

d

d𝑟
[𝑟𝑁𝑟(𝑟)] = 𝑁𝜑(𝑟),                                                                            (18) 

where 𝑁𝑟 is defined as 

𝑁𝑟(𝑟) = 𝑡(𝑟)𝜎(𝑟),                                                                              (19) 

here 𝜎𝑟 = 𝜎𝑟(𝑟) is the radial normal stress. The solution of the differential equation (18) under the 

initial condition  

𝑁𝑟(𝑟𝑖) = 0                                                                                    (20) 

 

is as follows 

𝑁𝑟(𝑟) =
1

𝑟
∫ 𝑁𝜑(𝜌) d𝜌

𝑟

𝑟𝑖

.                                                                           (21) 
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Detailed expression of the radial stress resultant 𝑁𝑟 is 

𝑁𝑟(𝑟) =
𝑀

𝐴 𝑒 𝑟
∫ 𝑡(𝜌) (1 −

𝑅

𝜌
)  d𝜌

𝑟

𝑟𝑖

.                                                          (22) 

𝑁𝑟 = 𝑁𝑟(𝑟) satisfies the following boundary condition  

𝑁𝑟(𝑟0) = 0.                                                                                    (23) 

The validity of this equation is follows from equation (24) 

𝑁𝑟(𝑟0) =
𝑀

𝐴 𝑒 𝑟
∫ 𝑡(𝜌) (1 −

𝑅

𝜌
) d𝜌 =

𝑟

𝑟𝑖

𝑁

𝑟0
= 0.                                                    (24) 

From equations (19) and (22) we obtain 

𝜎𝑟(𝑟) =
𝑀

𝐴 𝐸 𝑟 𝑡(𝑟)
∫ 𝑡(𝜌) (1 −

𝑅

𝜌
)d𝜌

𝑟

𝑟𝑖

.                                                    (25) 

The formula of the von Mises stresses is represented by equation (26) 

𝜎(𝑟) = √𝜎𝑟
2(𝑟) − 𝜎𝑟(𝑟)𝜎𝜑(𝑟) + 𝜎𝜑

2(𝑟) .                                                  (26) 

2. Governing equations for deformation 

The expression of the displacement vector 𝒖 can be represented as  

𝒖(𝑟, 𝜑, 𝑧) = 𝑈(𝜑)𝒆𝑟 + [𝑟𝜙(𝑟) + 𝑉(𝜑)]𝒆𝜑.                                               (27) 

where 

𝑉(𝜑) =
d𝑈

d𝜑
.                                                                                    (28) 

The following displacement “boundary conditions” are applied 

𝑈(0) = 0,      𝑉(0) = 0,      𝜙(0) = 0.                                                          (29) 

We starting from equation (30) 

𝑈′′ + 𝑈 = 𝑊 = −
𝑀 𝑅

𝐸 𝐴 𝑒
.                                                                    (30) 

From this equation it follows that 

𝑈(𝜑) = −
𝑀 𝑅

𝐸 𝐴 𝑒
+ 𝑐1 cos𝜑 + 𝑐2 sin 𝜑                                                      (31) 

and 

𝑉(𝜑) =
d𝑈

d𝜑
= −𝑐1 sin 𝜑 + 𝑐2 cos𝜑.                                                   (32) 
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Combination of equation (29) with equations (31) and (32) gives 

𝑐1 =
𝑀 𝑅

𝐸 𝐴 𝑒
,      𝑐2 = 0.                                                                         (33) 

Substitution equation (33) into equation (29) gives 

𝑈(𝜑) =
𝑀 𝑅

𝐸 𝐴 𝑒
(cos𝜑 − 1),                                                                      (34) 

𝑉(𝜑) = −
𝑀 𝑅

𝐸 𝐴 𝑒
sin 𝜑.                                                                        (35) 

The cross sectional rotation 𝜙 = 𝜙(𝜑) is obtained from equation (13) 

𝜙(𝜑) =
𝑀

𝐸 𝐴 𝑒
𝜑.                                                                                (36) 

3. Numerical Example 

In the numerical example we consider an elliptical cross section (see Figure 2).  

 

Figure 2. Elliptical cross section. 

The equation of the boundary contour is 

(𝑟 − 𝑐)2

𝑎2
+

𝑧2

𝑏2
= 1.                                                                                     (37) 

We introduce the elliptical coordinate 

𝑟 = 𝑐 + 𝑎𝜆 cos𝜗 ,        𝑧 = 𝑎𝜆 sin 𝜗 .                                                          (38) 

The expression of the area element d𝐴 is 

d𝐴 = 𝜆𝑎𝑏                                                                                                (39) 

𝑅 =
𝐴

∫
d𝐴
𝑟𝐴

=
𝑎 𝑏 𝜋

∫ ∫
𝜆 𝑎 𝑏

𝑐 + 𝑎 𝜆 𝑐𝑜𝑠𝜗
d𝜆 d𝜗

2𝜋

𝜗=0

1

𝜆=0

=
𝜋

∫ ∫
d𝜆 d𝜗

𝑐 + 𝑎𝜆 cos 𝜗
2𝜋

𝜗=0

1

𝜆=0

.                                          (40) 

It is evident that  

𝑒 = 𝑐 − 𝑅.                                                                                      (41) 

A closed form formula is given for 𝑅 in book by Pissaraiko et al. [7] 

𝑅 =
𝑎2

2(𝑐 − √𝑐2 − 𝑎2)
.                                                                       (42) 



International Journal of Engineering and Management Sciences (IJEMS) Vol. 8. (2023). No. 4. 

DOI: 10.21791/IJEMS.2023.038 

 
72 

 

The following numerical data are used 

𝑎 = 0.015 m,    𝑏 = 0.06 m,    𝑐 = 0.04 m,   𝐸 = 10 × 1011 Pa,    𝑀 = 104 Nm.                   (43) 

From formula (42) we obtain 

𝑅 = 0.03854049623 m.                                                                       (44) 

The plot of 𝜎𝜑 = 𝜎𝜑(𝑟) is shown in Figure 3. 

 

Figure 3. The plot of the hoop stress 𝜎𝜑  as a function of 𝑟 . 

The graph of 𝑁𝜑 = 𝑁𝜑(𝑟) is given in Figure 4. 

 
Figure 4. The plot of 𝑁𝜑 as a function of 𝑟 . 
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In Figure 5 the graph of the normal stress resultant 𝑁𝑟 is shown. 

 
Figure 5. The graph of 𝑁𝑟 as a function of 𝑟 . 

The graph of the radial normal stress is represented in Figure 6. 

 

Figure 6. The radial normal stress as a function of  𝑟 . 

The von Mises stress is given in Figure 7 and we have  

𝜎0 = max 𝜎(𝑟) = 1.3125 × 108 Pa            𝑟𝑖 ≤ 𝑟 ≤ 𝑟0                                    (45) 

For 𝜑1 = −
𝜋

8
, 𝜑2 =

𝜋

8
 the displacements 𝑈 = 𝑈(𝜑), 𝑉 = 𝑉(𝜑) and cross sectional rotation are shown in 

Figures 7, 8 and 9. 
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Figure 7. The plot of the radial displacement. 

 

 
Figure 8. The plot of the circumferential displacement component 𝑉 = 𝑉(𝜑). 

 

Figure 9. The plot of the cross-sectional rotation. 
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Conclusions 

Paper deals with the pure bending problem of curved beam. The material of the beam is linearly elastic, 

isotropic and homogenous. In-plane deformation of the curved beam is considered. Paper gives the 

expressions of the radial and hoop normal stresses. A strength of material solution is presented. The 

numerical results of this study can be used as benchmark solution to check the results of usual numerical 

methods such as finite elements, finite differences, etc. 
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