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Abstract. To apply mathematical methods to physical or other real life problem, we have to formulate the problem in 

mathematical terms. It means that, we have to construct the mathematical model for the problem. Many physical 

problems shows the relationships between changing quantities. The rates of change are represented mathematically 

by derivatives. In this case the mathematical models involve equations relating an unknown function and one or more 

of its derivatives. These equations are the differential equations. In this article, teaching the analysis of Newton's 

cooling model to engineering students is presented as one of the applications of separable differential equations.  
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Introduction 

Much of differential equations is devoted to learning mathematical techniques that are applied in later 

courses in other sciences.  

In this article we mention a few such applications. The mathematical model generally simplier than the 

actual situation being studied, since simplifying assumptions are usually required to obtain a 

mathematical problem that can be solved.  

A good mathematical model has two important properties: 

 It is sufficiently simple so that the mathematical problem can be solved. 

 It represents the actual situation sufficiently well so that the solution to the mathematical 

problem predicts the outcome of the real problem to within a useful degree of accuracy.  

We will give some examples for mathematical models involving separable differential equations related 

to Newton’s Law of Cooling.  

All the examples in this article deal with functions of time, which we denote by 𝑡 . If 𝑥 is a differentiable 

function of  𝑡,  𝑥′ denotes the derivative of 𝑥 with respect to 𝑡, thus 𝑥′ =
𝑑𝑥

𝑑𝑡
. 

In many cases, the preparation of the mathematical model for students is a serious problem. 
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Describing the model when the temperature is constant 

According to Newton’s law of cooling the rate of change of temperature of an object is proportional to 

the difference in temperature between the object and its surroundings. The temperature of the 

surroundings is sometimes called the ambient temperature. If  𝑇(𝑡) is the temperature at time 𝑡 of the 

object and 𝑇𝑎 is the temperature of its surroundings, then 

𝑇′(𝑡) = −𝑘 ⋅ (𝑇(𝑡) − 𝑇𝑎), 

where 𝑘 is a positive constant. This differential equation is separable.  

This mathematical model it can be used well when studying a small object in a large, fixed temperature, 

environment. 

First, we thinking a little about the sign of the constant of proportionality. At any time 𝑡 there are three 

cases. 

 If  𝑇(𝑡) > 𝑇𝑎 , that is, if the body is warmer than its surroundings, we would expect heat to flow from 

the body into its surroundings and so we would expect the body to cool off so that  𝑇′(𝑡) < 0, thus 

𝑘 > 0. 

 If  𝑇(𝑡) < 𝑇𝑎 , that is, if the body is cooler than its surroundings, we would expect heat to flow from 

the surroundings into the body and so we would expect the body to warm up so that  𝑇′(𝑡) > 0, thus 

𝑘 > 0. 

 If  𝑇(𝑡) = 𝑇𝑎 , that is the body and its environment have the same temperature, we would not expect 

any heat to flow between the two and so we would expect that  𝑇′(𝑡) = 0. This does not impose any 

condition on 𝑘. 

To the solution of the differential equation let denote 𝑔(𝑡) = −𝑘 and ℎ(𝑇) = 𝑇 − 𝑇𝑎 . In the general 

theory of the seprable differential equation, we get that 

∫ 𝑔(𝑡)  𝑑𝑡 = ∫
1

ℎ(𝑇)
  𝑑𝑇   ⇒     ∫ −𝑘  𝑑𝑡 = ∫

1

𝑇 − 𝑇𝑎
  𝑑𝑇. 

If we calculate the integrals, then the  

−𝑘 ⋅ 𝑡 = ln|𝑇 − 𝑇𝑎| + 𝑐 

equality holds. If we solve this equation to variable 𝑇 then we get that 

𝑇(𝑡) = 𝐶 ⋅ 𝑒−𝑘⋅𝑡 + 𝑇𝑎 . 

Let 𝑇0 is the temperature of the body when 𝑡 = 0, that is 𝑇0 = 𝑇(0). With this notation 𝑇0 = 𝐶 + 𝑇𝑎 , thus 

𝐶 = 𝑇0 − 𝑇𝑎. The general solution of the model 

𝑇(𝑡) = (𝑇0 − 𝑇𝑎) ⋅ 𝑒−𝑘⋅𝑡 + 𝑇𝑎 . 

We note that 

lim
𝑡→∞

𝑇(𝑡) = lim
𝑡→∞

(𝑇0 − 𝑇𝑎) ⋅ 𝑒−𝑘⋅𝑡 + 𝑇𝑎 = 𝑇𝑎 , 

which independent of 𝑇0. In this model the air temperature is constant.  
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Some concrete situation, when we can use the general model 

 Forensic Science 

 Cooling Down of Hot beverages 

 Measuring Temperature of a Heated Metal 

 Melting Ice-Cream 

Concrete example 1  

We would like to know the time at which a person died. In particular, we know the investigator arrived 

on the scene at 10:23 pm, which we will call 𝑡 hours after death. At 10:23, the temperature of the body 

was found to be 26.67 0𝐶. One hour later, the body was found to be 25.83. Our known data that, the 

temperature of environment, 𝑇𝑎 = 200𝐶 and 𝑇0 = 370𝐶. Substitute the data to the equation  

𝑇(𝑡) = (𝑇0 − 𝑇𝑎) ⋅ 𝑒−𝑘⋅𝑡 + 𝑇𝑎 , 

we get that 𝑇(𝑡) = 17 ⋅ 𝑒−𝑘⋅𝑡 + 20, where 𝑡 corresponds to 10: 23 and represents the time (in hours) 

since death. Since 𝑇(𝑡 + 1) = 17 ⋅ 𝑒−𝑘⋅(𝑡+1) + 20, therefore 

26.67 = 17 ⋅ 𝑒 −𝑘⋅𝑡 + 20 and 

25.83 = 17 ⋅ 𝑒−𝑘⋅(𝑡+1) + 20. 

From the first equation we get that 𝑒−𝑘⋅𝑡 =
6.67

17
, hence 25.83 = 17 ⋅

6.67

17
⋅ 𝑒 −𝑘 + 20. Solving this equation 

the value of 𝑘 will be 𝑘 = −ln (
5.83

6.67
) ≈ 0.1346. 

Now that we have a value for 𝑘, we can use this to solve for the remaining unknown, 𝑡. We have to find 

the value of 𝑡, when 𝑇(𝑡) = 26.67, that is we have to solve the equation 

26.67 ≈ 17 ⋅ 𝑒−0.1346⋅𝑡 + 20  ⇒    𝑡 ≈ 7. 

The final result means that the detective arrived on scene at 10:23 pm ( 𝑡  hours after death), the 

individual must have died 7 hours prior to 10:23 pm that is at approximately 3:23 pm. 

Concrete example 2 

Suppose that a cup of coffee is initially at a temperature of 950C and is placed in a 250C room. After a 

minute the temperature will be 800C.   

Newton’s law of cooling says that 

𝑇′(𝑡) = −𝑘 ⋅ (𝑇(𝑡) − 25). 

The solution of the differential equation is 

𝑇(𝑡) = 70 ⋅ 𝑒−𝑘⋅𝑡 + 25. 

It is known that 80 = 70 ⋅ 𝑒−𝑘 + 25, that is 𝑘 = − ln
11

14
. We get that, the time-temperature function is 
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𝑇(𝑡) = 70 ⋅ 𝑒ln
11
14

⋅𝑡 + 25 = 70 ⋅ (
11

14
)

𝑡

+ 25. 

 

Figure 1. Temperature as a function of time 

A glass of room-temperature water is carried out onto a balcony from an apartment where the 

temperature is 200C. After one minute the water has temperature  220C and after two minutes it has 

temperature  230C. What is the outdoor temperature? 

To the solution, we have to use the formula 

𝑇(𝑡) = (𝑇0 − 𝑇𝑎) ⋅ 𝑒−𝑘⋅𝑡 + 𝑇𝑎 

again. We leave the solution of this exercise to the reader. 

Description of the model for variable environmental temperatures 

In the model described above, the temperature of the environment was constant. However, this 

condition is not always applicable.  

Consider, for example, the simple situation that it does not matter if a cup of coffee cools down in a room 

or a huge cauldron of molten metal cools down in a room. The difference between the two situations is 

that the heat lost by the coffee probably will not raise the temperature of the room appreciably, but the 

heat loss from the cooling metal does. In this second situation, we have to use a model that takes into 

account the heat exchange between the object and the medium. 

In this situation we have the equation 

𝑇′(𝑡) = −𝑘 ⋅ 𝑇(𝑡) + 𝑘 ⋅ 𝑇𝑎(𝑡). 

From this equation we get that 𝑇′(𝑡) + 𝑘 ⋅ 𝑇(𝑡) = 𝑘 ⋅ 𝑇𝑎(𝑡). Multiplying both sides 𝑒𝑘⋅𝑡 ,  
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𝑇′(𝑡) ⋅ 𝑒𝑘⋅𝑡 + 𝑘 ⋅ 𝑇(𝑡) ⋅ 𝑒𝑘⋅𝑡 = 𝑘 ⋅ 𝑒𝑘⋅𝑡 ⋅ 𝑇𝑎(𝑡), 

that is (𝑇(𝑡) ⋅ 𝑒𝑘⋅𝑡)
′

= 𝑘 ⋅ 𝑒𝑘⋅𝑡 ⋅ 𝑇𝑎(𝑡). Integrating both sides it follows that  

𝑇(𝑡) ⋅ 𝑒𝑘⋅𝑡 − 𝑇(𝑡0) ⋅ 𝑒𝑘⋅𝑡0 = 𝑘 ⋅ ∫ 𝑒𝑘⋅𝜏

𝑡

𝑡0

⋅ 𝑇𝑎(𝜏) d𝜏. 

Concrete example 

Let us model outdoor temperature as a cosine with minimum at midnight: 

𝑇𝑎(𝑡) = 20 − 10 ⋅ cos(
2π ⋅ 𝑡

24
), 

where 𝑡 is time in hours, and 𝑇𝑎(𝑡) is the temperature in Celsius degrees. Assume at a party someone 

forgets a beer at pre-party 𝑡 = 22 (that is 22:00) in evening but finds it again at after-party 𝑡 = 26 (that 

is 2:00). How can we approach this problem of calculating how much warmer the beer has gotten? 

To the solution in fist step we have to integrate the function 

𝑒𝑘⋅𝜏 ⋅ (20 − 10 ⋅ cos(
2π ⋅ 𝜏

24
)). 

Using formula for partial integration, we get that 

∫ 𝑒𝑘⋅𝜏 ⋅ cos(
2𝜋 ⋅ 𝜏

24
)  d𝜏 =

𝑒𝑘⋅𝜏

𝑘
⋅ cos(

2𝜋 ⋅ 𝜏

24
) + ∫

𝑒𝑘⋅𝜏

𝑘
⋅ sin (

2𝜋 ⋅ 𝜏

24
) ⋅

𝜋

12
d𝜏. 

Integral by parts again, we get that 

∫ 𝑒𝑘⋅𝜏 ⋅ cos(
2𝜋 ⋅ 𝜏

24
) d𝜏 =

𝑒𝑘⋅𝜏

𝑘
⋅ cos(

2𝜋 ⋅ 𝜏

24
) +

𝑒𝑘⋅𝜏

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝜏

24
) ⋅

𝜋

12
− ∫

𝑒𝑘⋅𝜏

𝑘2 ⋅ cos(
2𝜋 ⋅ 𝜏

24
) ⋅

𝜋2

144
. 

From the last equation it follows that 

∫ (1 +
𝜋2

144𝑘2
) ⋅ 𝑒𝑘⋅𝜏 ⋅ cos(

2𝜋 ⋅ 𝜏

24
) d𝜏 =

𝑒𝑘⋅𝜏

𝑘
⋅ cos(

2𝜋 ⋅ 𝜏

24
) +

𝑒𝑘⋅𝜏

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝜏

24
) ⋅

𝜋

12
. 

This equation gives that 

∫ 𝑒𝑘⋅𝜏 ⋅ cos(
2𝜋 ⋅ 𝜏

24
) d𝜏 = (

𝑒𝑘⋅𝜏

𝑘
⋅ cos(

2𝜋 ⋅ 𝜏

24
) +

𝑒𝑘⋅𝜏

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝜏

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2. 

Using this result  

∫ 𝑒𝑘⋅𝜏 ⋅ (20 − 10 ⋅ cos(
2π ⋅ 𝜏

24
))  d𝜏

=
20𝑒𝑘⋅𝜏

𝑘
− 10 ⋅ (

𝑒𝑘⋅𝜏

𝑘
⋅ cos(

2𝜋 ⋅ 𝜏

24
) +

𝑒𝑘⋅𝜏

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝜏

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2 . 

If we integrate from 𝑡0 until 𝑡, we get that 
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∫ 𝑒𝑘⋅𝜏 ⋅ (20 − 10 ⋅ cos(
2π ⋅ 𝜏

24
))  d𝜏 =

𝑡

𝑡0

20𝑒𝑘⋅𝑡

𝑘
− 10 ⋅ (

𝑒𝑘⋅𝑡

𝑘
⋅ cos(

2𝜋 ⋅ 𝑡

24
) +

𝑒𝑘⋅𝑡

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝑡

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2 −

20𝑒𝑘⋅𝑡0

𝑘
− 10 ⋅ (

𝑒𝑘⋅𝑡0

𝑘
⋅ cos(

2𝜋 ⋅ 𝑡0

24
)+

𝑒𝑘⋅𝑡0

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝑡0

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2 .

 

 

Finally, we get that 

𝑇(𝑡) =
20

𝑘
− 10 ⋅ (

1

𝑘
⋅ cos(

2𝜋 ⋅ 𝑡

24
) +

1

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝑡

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2 − 

20𝑒𝑘⋅(𝑡−𝑡0)

𝑘
− 10 ⋅ (

𝑒𝑘⋅(𝑡−𝑡0)

𝑘
⋅ cos(

2𝜋 ⋅ 𝑡0

24
) +

𝑒𝑘⋅(𝑡−𝑡0)

𝑘2 ⋅ sin (
2𝜋 ⋅ 𝑡0

24
) ⋅

𝜋

12
 ) ⋅

144𝑘2

144𝑘2 + 𝜋2. 

Summary 

Newton's cooling model was presented in the article. In a simpler case, the ambient temperature is 

constant. However, when the ambient temperature changes, the model becomes significantly more 

complicated. Each case is illustrated with an example. 
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