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Abstract. The authors present an analytical solution for the two-layered composite beams with imperfect shear 

connections. The considered beam is simply supported at both ends. The beam is subjected to transverse and axial 

loads. The kinematic assumptions of the Euler-Bernoulli beam theory are used. The connection of the beam 

components is perfect in normal direction, but the axial displacement field may have jump. The shear axial force 

derived from the imperfect connection is proportional to the relative slip occurring between the layers. The 

determination of the analytical solution is based on the Fourier method.  Two examples illustrate the application of 

the presented analytical method. 

Keywords: Composite beam-column, Axial load  

Introduction 

Layered composite structures, especially layered composite beams are widely applied in building and 

bridge engineering since the advantages of the layers made of different materials can be well married, 

while their disadvantages can be reduced or eliminated. Therefore, it is very important to understand 

the mechanical behavior of the layers, composite beams and the influence of the connection between 

the layers of composite beams which are joined to each other by different shear connections such as 

nails, screws or rivets. Because of the elastic deformation of those connectors can occur between the 

connected beam components the appearance of interlayer slip is possible. In this paper it is assumed 

that the normal direction the connection of layers is perfect. The connection in axial direction may be 

imperfect, which is described by the concept interlayer slip. 

The first theoretical and experimental studies analyzing the behavior of the composite beams with 

interlayer slip was published in the 1950s [1,2,3]. In paper [2] the Euler-Bernoulli beam theory was 

utilized to describe the static behavior of composite beams with interlayer slip. Since then, a lot of 

papers, studies [4,6,7,8,10,11,12,13,14,15,16] have dealt with the problem of layered beams with partial 

shear interaction based on the results of Newmark et al [2]. Paper by Ecsedi and Baksa [5] presents a 

slip-cross-sectional rotational formulation to obtain the deflection, slip, cross-sectional rotation and 

internal forces in shear deformable composite beam with imperfect shear connection. An analytical 
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solution is presented for two layered composite beams with interlayer slip based on the assumptions of 

Timoshenko beam theory by the use of the method of fundamental solution in [17]. 

Elastic stability of beam-columns with weak shear connection is considered in papers [6] and [9]. 

Girhammar and Gupta studied the composite beam-columns with interlayer slip which subjected to 

transverse and axial loads [6]. They gave closed form solutions for simply supported beam, whose 

transverse load is a uniform distributed force along the whole length of the beam. In [6] the stability 

problem of the considered beam-column is also investigated. Lengyel and Ecsedi presented a second 

order analysis of composite beam-columns with interlayer slip. The considered beam carries the 

transverse load and constant axial load [13]. 

In the present paper a slip-deflection formulation is presented to solve the statics problem of composite 

beams with imperfect shear connection and constant axial load. 

1. Governing equations 

The present paper deals with the solution of a static problem of composite two-layered beam-column 

with imperfect shear connection. The considered simply supported beam-column and its loads are 

shown in Figure 1. The beam-column carries the axial and transverse loads. 

 
Figure 1 Layered composite beam-column and its applied load. 

The cross section of composite beam is given in Figure 2, the shape and data of cross section is borrowed 

from the paper [6]. 

 

Figure 2 The cross section of the composite beam-column. 
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In both examples the following data will be used  

ℎ1 = 0.025 [m],   𝑏1 = 0.3 [m],   ℎ2 = 0.075 [m],   𝑏2 = 0.05 [m],   𝐿 = 4 [m].                            (1) 

The modulus of elasticity of the beam component 𝑖 is 𝐸𝑖 (𝑖 = 1,2) where  

𝐸1 = 1.2 ×1010 [Pa], 𝐸2 = 8× 109 [Pa].                                              (2) 

The center of the cross section 𝐴𝑖 is denoted by 𝐶𝑖 (𝑖 = 1,2). The 𝐸-weighted center of composite cross 

section is 𝐶. In present problem the 𝐸-weighted center of the composite cross section is on the common 

boundary curve of cross sections 𝐴1 and 𝐴2 as shown in Figure 2. The length of the beam is 𝐿. The origin 

𝑂 of the rectangular Cartesian coordinate system 𝑂𝑥𝑦𝑧 is the 𝐸-weighted center of the left end cross 

section 𝐴 = 𝐴1 ∪ 𝐴2 , so that the axis 𝑧  is the 𝐸 -weighted center-line of the considered two-layer 

composite beam-column with flexible shear connection. Denote the beam-column component 𝑖  is 𝐵𝑖  

(𝑖 = 1,2). A point 𝑄 in 𝐵 = 𝐵1 ∪ 𝐵2  is illustrated by the position vector 𝑂𝑄⃗⃗⃗⃗⃗⃗ = 𝒓 = 𝑥𝒆𝑥 + 𝑦𝒆𝑦 + 𝑧𝒆𝑧 , 

where 𝒆𝑥, 𝒆𝑦  and 𝒆𝑧  are the unit vectors of the coordinate system 𝑂𝑥𝑦𝑧. It is known that the position of 

the 𝐸-weighted center 𝐶 is obtained as (see Figure 2) 

𝑐1 = |𝑂𝐶1
⃗⃗⃗⃗ ⃗⃗  ⃗| =

𝐴2𝐸2

𝐴𝐸
𝑐,   𝑐2 =

𝐴1𝐸1

𝐴𝐸
𝑐,   𝑐 = ℎ1 + ℎ2,                                       (3) 

𝐴𝐸 = 𝐴1𝐸1 + 𝐴2𝐸2.                                                                     (4) 

The common boundary of the beam component 𝐵1  and 𝐵2  is determined by 𝑦 = 0, |𝑥| ≤ 0.5𝑏2 (see 

Figure 2). The applied axial force acts on the beam-column component 𝐵𝑖  is denoted by 𝑃𝑖 is the point 

𝐶𝑖 (𝑖 = 1,2). The magnitude of 𝑃1 and 𝑃2 are such that the point of application of resultant axial force 

𝑃 = 𝑃1 + 𝑃2 is the 𝐸 -weighted center 𝐶  of the composite cross section 𝐴 = 𝐴1 ∪ 𝐴2. From this fact it 

follows that (see Figure 3) 

  𝑃1 =
𝑐2

𝑐
𝑃,   𝑃2 =

𝑐1
𝑐

𝑃.                                                                 (5) 

 

Figure 3 Illustration of the applied axial load. 

According to the Euler-Bernoulli beam theory which is valid for each homogenous beam-column 

component, the deformation of the whole composite beam with constant axial load can be described by 

the following displacement field 



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 8. (2023). No. 3. 

DOI: 10.21791IJEMS.2023.022 

 
17 

 

𝑢 = 0,   𝑣 = 𝑣(𝑧)    (𝑥, 𝑦, 𝑧) ∈ 𝐵1 ∪ 𝐵2,                                                 (6) 

𝑤(𝑦,𝑧) = 𝑤1(𝑧) − 𝑦
d𝑣

d𝑧
−

𝑃1𝑧

𝐴1𝐸1
      (𝑥, 𝑦, 𝑧) ∈ 𝐵1 ,                                     (7) 

𝑤(𝑦, 𝑧) = 𝑤2(𝑧) − 𝑦
d𝑣

d𝑧
−

𝑃2𝑧

𝐴2𝐸2
      (𝑥,𝑦, 𝑧) ∈ 𝐵2.                                     (8) 

In equations (6), (7) and (8) 𝑢 is the displacement in direction of 𝒆𝑥, 𝑣 is the displacement in direction 

of 𝒆𝑦  and 𝑤 is the displacement in direction of 𝒆𝑧 , which is the axial displacement (Figure 1). On the 

common boundary of 𝐵1 and 𝐵2 the axial displacement may have jump which is called the interlayer slip 

𝑠(𝑧) = 𝑤1(𝑧) − 𝑤2(𝑧) − 𝑧 (
𝑃1

𝐴1𝐸1
−

𝑃2

𝐴2𝐸2

).                                             (9) 

Form equations (4) and (6) it follows that 

𝑃1

𝐴1𝐸1
−

𝑃2

𝐴2𝐸2
= 0,                                                                    (10) 

that is 

𝑠(𝑧) = 𝑤1(𝑧) − 𝑤2(𝑧).                                                                (11) 

Application of the strain-displacement relationships of the linearized theory of elasticity gives [18,19] 

𝜀𝑥 = 𝜀𝑦 = 𝛾𝑥𝑦 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0       (𝑥,𝑦, 𝑧) ∈ 𝐵,                                        (12) 

𝜀𝑧 =
d𝑤1

d𝑧
− 𝑦

d2𝑣

d𝑧2 −
𝑃1

𝐴1𝐸1
        (𝑥,𝑦, 𝑧) ∈ 𝐵1,                                           (13) 

𝜀𝑧 =
d𝑤2

d𝑧
− 𝑦

d2𝑣

d𝑧2 −
𝑃2

𝐴2𝐸2
        (𝑥, 𝑦, 𝑧) ∈ 𝐵2.                                           (14) 

In equation (12), (13) and (14) 𝜀𝑥 , 𝜀𝑦and 𝜀𝑧  are the normal strains, 𝛾𝑥𝑦, 𝛾𝑦𝑧  and 𝛾𝑥𝑧 are the shearing 

strains. By the use of Hooke’s law, the following formulae are derived for the normal stress 𝜎𝑧 

𝜎𝑧 = 𝐸1 (
d𝑤1

d𝑧
− 𝑦

d2𝑣

d𝑧2
)−

𝑃1

𝐴1
         (𝑥, 𝑦, 𝑧) ∈ 𝐵1 ,                                         (15) 

𝜎𝑧 = 𝐸2 (
d𝑤2

d𝑧
− 𝑦

d2𝑣

d𝑧2
) −

𝑃2

𝐴2
         (𝑥,𝑦, 𝑧) ∈ 𝐵2.                                         (16) 

are used. 

The subsection forces and moments, according to the beam’s theory, are defined as 

𝑁1 = ∫ 𝜎𝑧d𝐴

𝐴1

= 𝑛1 − 𝑃1,              𝑁2 = ∫ 𝜎𝑧d𝐴

𝐴2

= 𝑛2 − 𝑃2,                                  (17) 

𝑀1 = ∫ 𝑦𝜎𝑧d𝐴

𝐴1

= −𝑐1𝐸1𝐴1

d𝑤1

d𝑧
− 𝐸1𝐼1

d2𝑣

d𝑧2 − 𝑐1𝑃1,                                      (18) 
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𝑀2 = ∫ 𝑦𝜎𝑧d𝐴

𝐴2

= −𝑐2𝐸2𝐴2

d𝑤2

d𝑧
− 𝐸2𝐼2

d2𝑣

d𝑧2 + 𝑐2𝑃2.                                     (19) 

In equation (17) 

𝑛1 = 𝐸1𝐴1 (
d𝑤1

d𝑧
− 𝑐1

d2𝑣

d𝑧2
),        𝑛2 = 𝐸2𝐴2 (

d𝑤2

d𝑧
+ 𝑐2

d2𝑣

d𝑧2
),                               (20) 

and in equations (18) and (19) 

𝐼𝑖 = ∫ 𝑦2d𝐴

𝐴𝑖

           (𝑖 = 1,2)                                                       (21) 

It is evident, that 

𝑁1 + 𝑁2 = −𝑃,                                                                       (22) 

that is 

𝑛1 + 𝑛2 = 0.                                                                         (23) 

By the use of equation (23) 

(−𝐸1𝐴1𝑐1 + 𝐸2𝐴2𝑐2)
𝑑2𝑣

𝑑𝑧2 = (−
𝐸1𝐴1𝐸2𝐴2

𝐴1𝐸1 + 𝐴2𝐸2
+

𝐸2𝐴2𝐸1𝐴1

𝐴1𝐸1 + 𝐴2𝐸2

)
𝑑2𝑣

𝑑𝑧2 = 0.                   (24) 

equation (23) can be written in the form 

𝐸1𝐴1

d𝑤1

d𝑧
− 𝐸2𝐴2

d𝑤2

d𝑧
= 0.    0 ≤ 𝑧 ≤ 𝐿.                                            (25) 

From equation (9) it follows that 

d𝑠

d𝑧
=

d𝑤1

d𝑧
−

d𝑤2

d𝑧
.                                                                        (26) 

The combination of equation (25) with equation (26) gives 

d𝑤1

d𝑧
=

𝐸2𝐴2

𝐴1𝐸1 + 𝐴2𝐸2

d𝑠

d𝑧
=

𝑐1
𝑐

d𝑠

d𝑧
,                                                         (27) 

d𝑤2

d𝑧
= −

𝐸1𝐴1

𝐴1𝐸1 + 𝐴2𝐸2

d𝑠

d𝑧
= −

𝑐2

𝑐

d𝑠

d𝑧
.                                                    (28) 

Inserting this result into the expression of 𝑁1, 𝑁2 and 𝑀1, 𝑀2 gives 

𝑁1 = 𝐵(
d𝑠

d𝑧
− 𝑐

d2𝑣

d𝑧2
)− 𝑃1 = 𝑛1(𝑧) − 𝑃1,                                               (29) 

𝑁2 = −𝐵(
d𝑠

d𝑧
− 𝑐

d2𝑣

d𝑧2
)− 𝑃2 = 𝑛2(𝑧) − 𝑃2,                                              (30) 

𝑀1 = 𝑐1𝐵
d𝑠

d𝑧
− 𝐸1𝐼1

d2𝑣

d𝑧2 − 𝑐1𝑃1,                                                      (31) 
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𝑀2 = 𝑐2𝐵
d𝑠

d𝑧
− 𝐸2𝐼2

d2𝑣

d𝑧2 + 𝑐2𝑃2.                                                      (32) 

From equations (29) – (32) it follows that 

𝑛1(𝑧) = −𝑛2(𝑧) = 𝐵(
d𝑠

d𝑧
− 𝑐

d2𝑣

d𝑧2
)                                                                        (33) 

and 

𝑀(𝑧) = 𝑀1(𝑧) + 𝑀2(𝑧) = 𝑐𝐵
d𝑠

d𝑧
− 𝑗

d2𝑣

d𝑧2 ,                                                (34) 

where 𝑀 = 𝑀(𝑧) is the bending moment on the whole cross section, and 𝑗 = 𝐸1𝐼1 + 𝐸2𝐼2. 

 

Figure 4 Free body diagram of beam component 𝛥𝐵1 . 

Application of the condition of equilibrium for the forces acting in axial direction of the beam-column 

component 𝐵1 (see Figure 4) the following equation can be derived 

d𝑁1

d𝑧
− 𝑘(𝑤1 − 𝑤2) = 0.                                                                    (35) 

In equation (35) 𝑆 = 𝑘𝑠 is the interlayer shear force and 𝑘 is the slip modulus [2,6,8]. The detailed form 

of equation (35) is 

𝐵
d2𝑠

d𝑧2 − 𝑘𝑠 − 𝑐𝐵
d3𝑣

d𝑧3 = 0.                                                                 (36) 

 

Figure 5 Beam element with its load. 

Figure 5 shows a beam element and its load. According to Figure 5 the following equilibrium equations 

are valid 

d𝑇

d𝑧
+ 𝑓𝑦 = 0         0 < 𝑧 < 𝐿,                                                               (37) 
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d𝑀

d𝑧
− 𝑇 − 𝑃

d𝑣

d𝑧
= 0         0 < 𝑧 < 𝐿.                                                          (38) 

In equations (37) and (38) 𝑓𝑦 = 𝑓𝑦(𝑧) is the applied distributed force in direction of axis 𝑦 and 𝑇 = 𝑇(𝑧) 

is the cross-sectional shear force. Combination of equation (37) with equation (38) gives 

d2𝑀

d𝑧2 − 𝑃
d2𝑣

d𝑧2 + 𝑓𝑦 = 0         0 < 𝑧 < 𝐿.                                                      (39) 

Substitution of expression 𝑀 = 𝑀(𝑧)  into equation (39) provides a fundamental equation of slip-

deflection formulation 

𝑐𝐵
d3𝑠

d𝑧3 − 𝑗
d4𝑣

d𝑧4 + 𝑃
d2𝑣

d𝑧2 + 𝑓𝑦 = 0         0 < 𝑧 < 𝐿.                                               (40) 

The determination of deflection and of slip function is based on the system of equations (36), (39). In 

the case of first order analysis the following equilibrium equation 

d𝑀

dz
− 𝑇 = 0         0 < 𝑧 < 𝐿.                                                                 (41) 

is used instead of equation (38). 

2. Simply supported beam-columns with constant axial load 

Figure 1 shows the simply supported beam with its load. The boundary conditions for simply supported 

beam are formulated as [4,6] 

𝑣(0) = 0,         𝑀(0) = 0, 𝑛(0) = 0,                                                 (42) 

𝑣(𝐿) = 0,         𝑀(𝐿) = 0, 𝑛(𝐿) = 0.                                                 (43) 

The Fourier series representation of the applied transverse load is used 

𝑓𝑦(𝑧) = ∑𝑓𝑙 sin
𝑙𝜋

𝐿
𝑧

∞

𝑙=1

     0 ≤ 𝑧 ≤ 𝐿,                                                     (44) 

where 

𝑓𝑙 =
2

𝐿
∫ 𝑓𝑦(𝑧)sin

𝑙𝜋

𝐿
𝑧 d𝑧

𝐿

0

       (𝑙 = 1,2, …).                                               (45) 

The solution of the system of differential equations (36), (39) is looked as 

𝑣(𝑧) = ∑𝑉𝑙 sin
𝑙𝜋

𝐿
𝑧

∞

𝑙=1

,     𝑠(𝑧) = ∑𝑆𝑙 sin
𝑙𝜋

𝐿
𝑧 .

∞

𝑙=1

                                                 (46) 

A simple computation gives the following result 

𝑀(𝑧) = ∑[−𝑐
𝑙𝜋

𝐿
𝐵𝑆𝑙 + (

𝑙𝜋

𝐿
)
2

𝑗𝑉𝑙] sin
𝑙𝜋

𝐿
𝑧 ,

∞

𝑙=1

                                                 (47) 
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𝑛(𝑧) = ∑− [𝐵
𝑙𝜋

𝐿
𝑆𝑙 + 𝑐𝐵(

𝑙𝜋

𝐿
)
2

𝑉𝑙] sin
𝑙𝜋

𝐿
𝑧 ,

∞

𝑙=1

                                           (48) 

𝑇(𝑧) = ∑[−𝑐𝐵(
𝑙𝜋

𝐿
)
2

𝑆𝑙 + ((𝑗
𝑙𝜋

𝐿
)
3

− 𝑃
𝑙𝜋

𝐿
)𝑉𝑙] sin

𝑙𝜋

𝐿
𝑧 

∞

𝑙=1

.                                  (49) 

It is evident that the functions given by equation (46), (47) and (48) satisfy the prescribed boundary 

conditions for arbitrary values of 𝑉𝑙 , 𝑆𝑙 (𝑙 = 1, 2,3,…). From the governing differential equation (36) 

and (39) it follows that 

𝑉𝑙 =
𝑓𝑙

−𝑗 (
𝑙𝜋
𝐿
)
4

+ 𝑃(
𝑙𝜋
𝐿
)
2

+
𝑐2𝐵2 (

𝑙𝜋
𝐿
)
6

𝑘 + 𝐵(
𝑙𝜋
𝐿
)
2

     (𝑙 = 1,2,3, …)                                  (50) 

𝑆𝑙 =
𝑐𝐵 (

𝑙𝜋
𝐿
)
3

𝑘 + 𝐵(
𝑙𝜋
𝐿
)
2 𝑉𝑙        (𝑙 = 1,2,3,…).                                                      (51) 

The expression of normal stress 𝜎𝑧  in terms of 𝑠 = 𝑠(𝑧) and 𝑣 = 𝑣(𝑧) can be derived by the use of 

equations (15), (16), (26) and (27) 

𝜎𝑧(𝑦, 𝑧) =  −𝐸1 (
𝑐1
𝑐

d𝑠

d𝑧
− 𝑦

d2𝑣

d𝑧2
)−

𝑃1

𝐴1
         0 ≤ 𝑦 ≤ ℎ1,                                  (52) 

𝜎𝑧(𝑦, 𝑧) =  −𝐸2(
𝑐2

𝑐

d𝑠

d𝑧
+ 𝑦

d2𝑣

d𝑧2
)−

𝑃2

𝐴2
        − ℎ1 ≤ 𝑦 ≤ 0.                                  (53) 

The shear stress resultant 𝑁𝑦𝑧 is introduced as 

𝑁𝑦𝑧 = 𝜏𝑦𝑧𝑏1    for    0 ≤ 𝑦 ≤ 2ℎ1,                                                         (54) 

𝑁𝑦𝑧 = 𝜏𝑦𝑧𝑏2    for   − 2ℎ1 ≤ 𝑦 ≤ 0.                                                         (55) 

Integration of the equilibrium equation 

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧

𝜕𝑧
= 0,                                                                        (56) 

gives 

𝜏𝑦𝑧(𝑦, 𝑧) − 𝜏𝑦𝑧(0, 𝑧) = −∫
𝜕𝜎𝑧

𝜕𝑧
d𝑧.

𝑧

0

                                                    (57) 

The shearing stress 𝜏𝑦𝑧 = 𝜏𝑦𝑧(𝑦, 𝑧) satisfies the boundary conditions 

𝜏𝑦𝑧(2ℎ1,𝑧) = 0,     𝜏𝑦𝑧(−2ℎ2, 𝑧) = 0.                                                   (58) 

The continuity condition of shearing stress resultant 𝑁𝑦𝑧  in terms of shearing stress 𝜏𝑦𝑧  can be 

formulated as 
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lim
𝜀→0

(𝑏1𝜏𝑦𝑧(𝜀
2,𝑧) − 𝑏2𝜏𝑦𝑧(−𝜀2,𝑧)) = 0.                                                        (59) 

Knowing the normal stress 𝜎𝑧  and 𝜏𝑦𝑧  it is possible to obtain from equilibrium equation the normal 

stress 𝜎𝑦 

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
= 0.                                                                        (60) 

Integration of equation (60) gives 

𝜎𝑦(𝑦, 𝑧) − 𝜎𝑦(0, 𝑧) = − ∫
𝜕𝜏𝑦𝑧

𝜕𝑧
d𝑦.

𝑦

0

                                                    (61) 

The normal stress 𝜎𝑦 = 𝜎𝑦(𝑦, 𝑧) satisfies the following stress boundary conditions 

𝜎𝑦(2ℎ1, 𝑧) =
𝑓𝑦(𝑧)

𝑏1
,     𝜎𝑦(−2ℎ2, 𝑧) = 0.                                                   (62) 

Subservient to define the normal stress resultant 𝑁𝑦 as 

𝑁𝑦 = 𝜎𝑦𝑏1   for 0 ≤ 𝑦 ≤ 2ℎ1,                                                   (63) 

𝑁𝑦 = 𝜎𝑦𝑏2   for− 2ℎ2 ≤ 𝑦 ≤ 0.                                                   (64) 

The continuity condition of 𝑁𝑦 at 𝑦 = 0 gives 

lim
𝜀→0

(𝑏1𝜎𝑦(𝜀
2,𝑧) − 𝑏2𝜎𝑦(−𝜀2,𝑧)) = 0.                                                  (65) 

In the numerical examples the graphs of 𝜎𝑧 = 𝜎𝑧(𝑦, 𝑧) , 𝑁𝑦𝑧 = 𝑁𝑦𝑧(𝑦, 𝑧) and 𝑁𝑦 = 𝑁𝑦(𝑦, 𝑧)  for some 

values of axial coordinate 𝑧 are presented. 

3. Examples 

3.1. Example 1 

Figure 6 shows the beam-column and its applied load. 

 

Figure 6 Partially loaded beam-column with uniform load. 

The plots of function 𝑣 = 𝑣(𝑧) and 𝜙 = 𝜙(𝑧) are shown in Figure 7 and 8. 
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Figure 7 The graph of the deflection function 𝑣 = 𝑣(𝑧).

 

Figure 8 The graph of the cross-sectional rotation function 𝜙 = 𝜙(𝑧). 

The graph of the slip function 𝑠 = 𝑠(𝑧) is illustrated in Figure 9. 

 

Figure 9 The graph of slip function 𝑠 = 𝑠(𝑧). 

The graphs of 𝑀 = 𝑀(𝑧) , 𝑛 = 𝑛(𝑧)  and 𝑇 = 𝑇(𝑧)  are shown in Figures 10, 11 and 12. Since the 

composite beam-columns with simply supported boundary conditions is statically determinate, the 
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bending moment and shear force diagrams can be obtained immediately from the applied load. This fact 

gives an opportunity to check the validity of results obtained by the applications of formulae (47) and 

(49). 

 

Figure 10 The graph of the bending moment function 𝑀 = 𝑀(𝑧). 

 

Figure 11 The graph of the function 𝑛 = 𝑛(𝑧). 

 

Figure 12 The graph of the shear force function 𝑇 = 𝑇(𝑧). 
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The stress field is obtained by the application of equations (52), (53) and equations (54), (55), (57), 

(58), (61), (63) and (64). 

The plots of normal stress 𝜎𝑧(𝑦, 𝑧) as a function of 𝑦 for 𝑧 = 𝐿/6, 𝑧 = 𝐿/4, 𝑧 = 3𝐿/4 and 𝑧 = 𝐿  are 

shown in Figure 13. 

 
Figure 13 Plots of the normal stress 𝜎𝑧 = 𝜎𝑧(𝑦, 𝑧) for four different values of axial coordinate. 

The graphs of the shearing stress resultant 𝑁𝑦𝑧(𝑦, 𝑧) as a function of 𝑦 are presented in Figure 14. 

3  

Figure 14 The graphs of the shearing stress resultant as a function of 𝑦 for four different values of 𝑧. 

The plots of the normal stress resultants 𝑁𝑦(𝑦, 𝑧) as a function of 𝑦 for four different values of the 𝑧 

coordinate are given in Figure 15. 
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Figure 15 The plots of the function 𝑁𝑦 = 𝑁(𝑦, 𝑧) as a function of 𝑦 for 𝑧 = 0, 𝑧 = 0.25𝐿 , 𝑧 = 0.66𝐿  and 𝑧 = 0.99𝐿 . 

3.2. Example 2 

Figure 16 shows the beam-column and its applied load. The expression of the applied transverse load is 

𝑓𝑦(𝑧) =
𝑓0
𝐿

𝑧       for 0 ≤ 𝑧 ≤ 𝐿.                                                          (66) 

 
Figure 16 The beam-column with a linearly varying load and constant axial load.  

The graphs of the deflection function 𝑣 = 𝑣(𝑧) and the cross-sectional rotation function 𝜙 = 𝜙(𝑧) are 

presented in Figures 17 and 18. 

 

Figure 17 The plot of the deflection function 𝑣 = 𝑣(𝑧). 
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Figure 18 The graph of the cross-sectional rotation function 𝜙 = 𝜙(𝑧). 

The plot of slip function 𝑠 = 𝑠(𝑧) is shown in Figure 19. 

 

Figure 19 The plot of the slip function 𝑠 = 𝑠(𝑧). 

The graphs of the bending moment 𝑀 = 𝑀(𝑧) and shear force 𝑇 = 𝑇(𝑧) are given by in Figures 20 and 

21. 

 

Figure 20 The graph of the bending moment function 𝑀 = 𝑀(𝑧). 
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Figure 21 The plot of the cross-sectional shear force function 𝑇 = 𝑇(𝑧). 

The plot of the function 𝑛 = 𝑛(𝑧) is presented in Figure 22. 

 

Figure 22 The graph of the function 𝑛 = 𝑛(𝑧). 

The plots of normal stress 𝜎𝑧 = 𝜎𝑧(𝑦, 𝑧) and the stress resultant 𝑁𝑦𝑧 = 𝑁𝑦𝑧(𝑦, 𝑧) are shown in Figures 

23 and 24 as a function of 𝑦 for four different values of he axial coordinate 𝑧. 

 

Figure 23 The graphs of the normal stresses as a function of 𝑦 for four different values of axial coordinate.  
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Figure 24 The graphs of the shearing stress resultant 𝑁𝑦𝑧 = 𝑁𝑦𝑧(𝑦, 𝑧) as a function of 𝑦 for 𝑧 =
𝐿

4
,
𝐿

3
,
𝐿

2
, 𝐿 . 

The plots of the normal stress resultant 𝑁𝑦 = 𝑁𝑦(𝑦, 𝑧) as a function of 𝑦 are presented in Figure 25 for 

𝑧 =
𝐿

4
,
𝐿

3
,
𝐿

2
, 𝐿. 

 

Figure 25 The graphs of the shearing stress resultant 𝑁𝑦 = 𝑁𝑦(𝑦, 𝑧) as a function of 𝑦 for 𝑧 =
𝐿

4
,
𝐿

3
,
𝐿

2
,𝐿 . 

4. Conclusions 

In this paper a two-layered composite beam-column with imperfect shear connection is considered. The 

beam-column at both end is simply supported and its applied load is transverse load which depends on 

the axial coordinate and constant axial load. The presented closed form solution is obtained by the 

Fourier series representation of the displacement and slip functions. Two examples illustrate the 

application of the developed analytical method. 
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