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Abstract. The paper deals with the torsional rigidity of homogenous and orthotropic beam with rectangu lar cross 

section. The torsional rigidity of the considered beam is defined in the framework of the Saint-Venant theory of 

uniform torsion. Exact and approximate solutions are given to  the determination of the torsional rigidity.  The shape 

of cross section is determined which gives maximum value of the torsional rigidity for a given cross-sectional area. 

The dependence of torsional rigidity as a function of the ratio shear moduli of beam is also studied. 
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Introduction 

Figure 1 shows the beam with rectangular cross section which is subjected to torsional load. The 

material of the beam is elastic, homogenous and Cartesian orthotropic with shear moduli 𝐺𝑥𝑧 = 𝐺𝑥 and 

𝐺𝑦𝑧 = 𝐺𝑦 . Although the exact solution is known for the twisted orthotropic beam with a rectangular 

cross section [1,2,3,4], the basic formulae are given for the simplicity, which are directly connected to 

the torsional stiffness. 

 

Figure 1 Beam with torsional load. 

The Prandtl stress function 𝑈 = 𝑈(𝑥, 𝑦) for Cartesian orthotropic beam with solid cross section satisfies 

the following Dirichlet type boundary-value problem (Figure 1) 

1
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𝜕𝑥2 +
1

𝐺𝑥

𝜕2𝑈

𝜕𝑦2 = −2    (𝑥, 𝑦) ∈ 𝐴,                                                          (1) 

𝑈(𝑥, 𝑦) = 0    (𝑥, 𝑦) ∈ 𝜕𝐴,                                                                    (2) 

where 𝐴 denotes the cross section and 𝜕𝐴 is the boundary curve of 𝐴. In present problem  
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𝐴 = {(𝑥, 𝑦) |  − 𝑎 < 𝑥 < 𝑎; −𝑏 < 𝑦 < 𝑏},                                                       (3) 

𝜕𝐴 = {(𝑥, 𝑦) | (𝑎2 − 𝑥2)(𝑏2 − 𝑦2) = 0; |𝑥| ≤ 𝑎; |𝑦| ≤ 𝑏}.                                        (4) 

The solution of the boundary-value problem for 𝑈 = 𝑈(𝑥, 𝑦) is as follows [1,2] 

𝑈(𝑥, 𝑦) = ∑
32𝐺𝑦𝑎2

(2𝑘 − 1)𝜋3
(1 −

cosh (
2𝑘 − 1

2𝑎
𝜋) 𝑦

cosh (
2𝑘 − 1

2𝑎
𝜋𝑏)

)

∞

𝑘=1

sin (
(2𝑘 − 1)𝜋

2𝑎
) (𝑥 + 𝑎),                                 

  −𝑎 ≤ 𝑥 ≤ 𝑎; −𝑏 ≤ 𝑦 ≤ 𝑏.            (5) 

The expression of the torsional rigidity can be represented as  

𝑆 = 2 ∫ 𝑈 d𝐴

𝐴

= ∑

512𝐺𝑦𝑎3 (𝑏 −
2𝑎√𝐺𝑦

(2𝑘 − 1)𝜋√𝐺𝑥

tanh 
(2𝑘 − 1)𝜋√𝐺𝑥 𝑏

2𝑎√𝐺𝑦

)cos 2 𝑘𝜋

(2𝑘 − 1)4𝜋4

∞

𝑘=1

,           (6) 

according to [1,2,3,4]. 

1. Lower bound for the torsional rigidity 

Nowinski [5] gave a lower bound formula for the torsional rigidity of homogeneous and Cartesian 

anisotropic beam. In the present problem the form of this lower bound expression is as follows 

𝑆 > 𝑆𝐿 =
(∫ 2𝑈𝐴 d𝐴)2

∫ [
1

𝐺𝑦
(

𝜕𝑈
𝜕𝑥

)
2

+
1

𝐺𝑥
(

𝜕𝑈
𝜕𝑦

)
2

]
𝐴 d𝐴

,                                                     (7) 

where 𝑈 = 𝑈(𝑥, 𝑦)  is a statically admissible stress function. 𝑈 = 𝑈(𝑥, 𝑦)  satisfies the boundary 

condition 

𝑈(𝑥, 𝑦) = 0    (𝑥, 𝑦) ∈ 𝜕𝐴,                                                                    (8) 

and it is twice continuously differentiable function of the variables 𝑥 and 𝑦. 

Application of formula (7) to the function 

𝑈(𝑥, 𝑦) = (𝑎2 − 𝑥2)(𝑏2 − 𝑦2)    (𝑥, 𝑦) ∈ 𝐴 ∪ 𝜕𝐴                                               (9) 

gives 

𝑆𝐿 =
40

9

𝐺𝑥 𝐺𝑦𝑎3𝑏3

𝑎2𝐺𝑦 + 𝑏2𝐺𝑥
.                                                              (10) 

2. Upper bound for the torsional rigidity 

Nowinski [5] derived an upper bound formula for the torsional rigidity of homogenous and Cartesian 

anisotropic beam. In the present problem, for Cartesian orthotropic beam this formula gives 
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𝑆 ≤ 𝑆𝑈 = 𝐺𝑥 ∫ 𝑦2 d𝐴

𝐴

+ 𝐺𝑦 ∫ 𝑥2 d𝐴

𝐴

−

(∫ (𝑥𝐺𝑦
𝜕𝜔
𝜕𝑦

− 𝑦𝐺𝑥
𝜕𝜔
𝜕𝑥

) d𝐴
𝐴

)
2

∫ [𝐺𝑥 (
𝜕𝜔
𝜕𝑥

)
2

+ 𝐺𝑦 (
𝜕𝜔
𝜕𝑦

)
2

] d𝐴𝐴

 ,                           (11) 

where 𝜔 = 𝜔(𝑥, 𝑦)  is a kinematically admissible torsion function whose second order partial 

derivatives with respect to 𝑥 and 𝑦 are continuous functions. 

Substitution for 𝜔 = 𝜔(𝑥, 𝑦) the function 

𝜔(𝑥, 𝑦) = 𝑥𝑦,                                                                               (12) 

into (11) gives 

𝑆𝑈 =
4𝐺𝑥 𝐺𝑦𝐽𝑥𝐽𝑦

𝐺𝑥 𝐽𝑥 + 𝐺𝑦𝐽𝑦
.                                                                        (13) 

For the cross section shown in Figure 1 

𝑆𝑈 =
48

9

𝐺𝑥 𝐺𝑦𝑎3𝑏3

𝑎2𝐺𝑦 + 𝑏2𝐺𝑥
.                                                                     (14) 

In formula (14) for rectangular cross section (see Figure 1) 

𝐽𝑥 = ∫ 𝑦2  d𝐴

𝐴

=
4

3
𝑎𝑏3,       𝐽𝑦 = ∫ 𝑥2 d𝐴

𝐴

=
4

3
𝑎3𝑏                                         (15) 

are used. 

According to the inequality relation which is valid for harmonic mean and arithmetic mean of two 

positive real numbers 𝑐 = 𝐺𝑥 𝐽𝑥 and 𝑑 = 𝐺𝑦𝐽𝑦 we can write 

2𝑐𝑑

𝑐 + 𝑑
=

4𝐺𝑥 𝐺𝑦𝐽𝑥 𝐽𝑦

𝐺𝑥 𝐽𝑥 + 𝐺𝑦𝐽𝑦
≤

𝑐 + 𝑑

2
=

𝐺𝑥 𝐽𝑥 + 𝐺𝑦𝐽𝑦

2
,                                               (16) 

that is 

𝑆𝑈 =
4𝐺𝑥 𝐺𝑦𝐽𝑥𝐽𝑦

𝐺𝑥 𝐽𝑥 + 𝐺𝑦𝐽𝑦
≤ 𝑅𝑈 = 𝐺𝑥 𝐽𝑥 + 𝐺𝑦𝐽𝑦                                                    (18) 

Equality in inequality relation (16) is valid only if 

𝐺𝑥 𝐽𝑥 = 𝐺𝑦𝐽𝑦 .                                                                             (19) 

𝑅𝑈 is a possible upper bound for 𝑆, it is weaker than as 𝑆𝑈. 

3. The bounding formulae as a function of the ratio of shear moduli  

In this section the lower and the upper bounds of torsional rigidity with the exact value of torsional 

rigidity as a function of ratio of shear moduli 𝑝 = 𝐺𝑦/𝐺𝑥 is analysed. The following numerical data are 

used 
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𝑎 = 0.045 m,    𝑏 = 0.025 m,    𝐺𝑥 = 10 × 1010 Pa. 

 

Figure 2 Illustrations of the graphs of function 𝑆𝑈
(𝑝), 𝑆(𝑝) and 𝑆𝐿(𝑝) for 0.1 ≤ 𝑝 ≤ 4. 

4. Determination of the cross section whose torsional rigidity has 

maximum value for a given cross sectional area 

The geometric dimensions of the torsional rigidity with the maximum value for given cross-sectional 

area is calculated in two steps. Firstly, the approximate value of the geometric dimensions is obtained 

by the application of lower bound formula (10). Secondly, the obtained value will be made accurate by 

the application of formula (6). The cross-sectional area in terms of 𝑎 and 𝑏 is 

𝐴 = 4𝑎𝑏.                                                                               (20) 

Combination of equation (9) with equation (18) gives 

𝑆𝐿(𝑎) =
5

72

𝐴3𝐺𝑥 𝐺𝑦

𝑎2𝐺𝑦 +
𝐴2

16𝑎2 𝐺𝑥

.                                                                (21) 

A simple calculation shows that 

5

72

𝐴3𝐺𝑥 𝐺𝑦

𝑎2𝐺𝑦 +
𝐴2

16𝑎2 𝐺𝑥

≤ �̃�0 =
5

72

𝐴3𝐺𝑥 𝐺𝑦

𝑎1
2𝐺𝑦 +

𝐴2

16𝑎1
2 𝐺𝑥

,                                        (22) 

where  

𝑎1 =
√𝐴

2
√

𝐺𝑥

𝐺𝑦

4
,                                                                    (23) 

and 

𝑏1 =
𝐴

4𝑎1
=

√𝐴

2
√

𝐺𝑦

𝐺𝑥

4

.                                                                    (24) 
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variables 𝑎1  and 𝑏1  can be considered as a first approximation of the geometrical dimension of the 

optimal cross section. It is very easy to prove that 

�̃�0 =
5

36
√𝐺𝑥 𝐺𝑦𝐴2 ≥ 𝑆𝐿(𝑎).                                                                    (23) 

The exact values of cross sectional dimensions of optimal cross section is computed for the following 

numerical data 

𝐺𝑥 = 7 × 1010 Pa,     𝐺𝑦 = 9.5 × 1010 Pa,      𝐴 = 0.0045 m2.                                        

For this data the following results are achieved 

𝑎1 = 0.021 064 329 660 m,      𝑏1 = 0.053 407 823 500 m.                              (24) 

The plot of function 𝑆 = 𝑆(𝑎) for 0.03 ≤ 𝑎 ≤ 0.0315  is shown in Figure 3. Expression of 𝑆(𝑎) is as 

follows 

𝑆(𝑎) = ∑
512𝐺𝑦𝑎

(2𝑘 − 1)𝜋4
(

𝐴

4𝑎
−

2𝑎√𝐺𝑦

(2𝑘 − 1)𝜋√𝐺𝑥

tanh (
(2𝑘 − 1)𝜋

8𝑎2 √
𝐺𝑥

𝐺𝑦
𝐴))

200

𝑘=1

cos2𝑘𝜋.             (25) 

 

Figure 3 The plot of graph of function 𝑆 = 𝑆(𝑎) for rectangular cross section. 

Numerical computations give the results for 𝑎0, 𝑏0 and 𝑆(𝑎0) 

𝑆(𝑎) ≤ 𝑆(𝑎0) = 5.052 363 2 × 105 Nm2,                                                  (26) 

𝑎0 = 0.021 064 330 m,      𝑏0 = 0.053 407 822 600 m.                              (27) 

For 𝐺𝑥 = 𝐺𝑦  the square cross section gives the maximal value of torsional rigidity for prescribed cross-

sectional area 𝐴. In this case 

𝑆0(𝑎) = ∑
128𝑎2

(2𝑘 − 1)5𝜋5
(2𝜋𝐴𝑘 − 𝐴𝜋 − 8𝑎2 tanh

(2𝑘 − 1)𝜋𝐴

8𝑎2
)

∞

𝑘=1

                             (28) 

and 
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𝑆0(𝑎) ≤ 𝑆0 (
√𝐴

2
)         𝑎 = 𝑏 = √

𝐴

2
.                                                                       (29) 

 

Figure 4 The plot of graph of function 𝑆0 = 𝑆0(𝑎) for square cross section. 

The plot of function 𝑆0(𝑎) is shown in Figure 4. 

5. Conclusions 

Some properties of torsional rigidity of homogenous and Cartesian orthotropic beam are studied. The 

cross section of the beam is a rectangle. The dimensions of the cross section is determined which gives 

the maximum value of torsional rigidity for given a cross-sectional area. 
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