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Abstract. In this paper, the effect of the boundary conditions on the stability of thin-walled aerosol cans under axial 

pressure is investigated. The main objective is to outline the main characteristics of this highly nonlinear mechanical 

problem and to present methods to simulate the buckling of cans with different boundary conditions. Due to the 

numerical difficulties coming from the contact between the can and different components of the machines, the effect 

of the different supports of the can is investigated on the crushing (or buckling) force at which the loss of stability 

occurs. The commercial finite element software Abaqus is used to solve the problems and to present the efficiency of 

FE codes in the design process of cans.  
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Introduction  

The global demand of metal packaging product made from mainly pure (99.5%) aluminium or metal is 

constantly growing. These packaging products are designed to meet the standards of modern design 

and lifestyle. They come in many shapes and forms and can store a wide variety of products. The 

packaging can be recycled again and again without loss of quality, making it available today and for the 

future generations, which makes it the perfect example of a circular economy at work.  

A multitude of can sizes, shapes and printing designs can be manufactured to meet individual customer 

requirements. During the design process of these products, it is important to determine the forming 

limits of the geometry which is related to the buckling behaviour of the cans. There are several 

textbooks, that deal with the mechanics of plates and shells, such as [1,2].  

Hardy and Abdusslam [3] tackled the numerical simulation of the back extrusion step of thin metal cans. 

Belblidia et. al. [4], [5] developed finite element techniques to determine the stress state and burst 

pressure of thin aerosol cans. Article [6] investigated several technological parameters of the forming 

process of cans using experimental data, while Takeutshi [7] gave a few basic problems in the forming 

process of thin aluminium cans. Gönczi [8] presented modelling techniques to calculate the reaction 

forces during the necking phase of the aerosol can manufacturing. 

We can find a lot of papers that deal with the loss of stability of different structural components. It is a 

popular topic to determine the buckling load of beams (such as in [9]) and shells (eg. [10]). Article [11] 
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investigated specific errors in the geometry, while papers [12-15] introduced the effect of imperfections 

in specific cases of thin cylindrical shells. 

Our aim is to investigate the axial buckling of thin-walled cans and determine the reaction force – 

displacement functions. To investigate the buckling load, different boundary conditions and different 

methods to describe the support of the can will be considered. These factors are absent from the 

previously mentioned works due to the numerical difficulties coming from certain modelling 

approaches. 

1. Model formulation and data  

Due to the nature of buckling problems, three-dimensional geometry is used. The can is mapped by thin 

two-dimensional shell element. It is a highly nonlinear problem, in which large deformations occur. 

Furthermore the considered material is strain hardened aluminium (99.5%), which involves material 

nonlinearities. The modulus of elasticity is 75 GPa, the Poisson ratio is 0.4, the yield stress is 120 MPa, 

moreover a bilinear plasticity law is utilized with 230MPa stress at strain level 𝜑 = 4. 

In our problem, there are boundary nonlinearities, which can cause serious numerical issues and errors, 

moreover they can greatly increase the solution time. One of our main objectives is to present the 

possibilities to bypass these issues and investigate their effect on the reaction forces, mainly on the 

buckling force. To support the cans during the shaping process, different tools are used. Figure 1 shows 

a two-jaw chuck and an eight-jaw chuck used to hold the aerosol cans during necking and bottom 

forming. 

 

Figure 1. Possibilities for holding thin-walled cans during manufacturing. 

At first, the chucks will be replaced by kinematic boundary conditions prescribed at the side and at the 

base of the cylindrical shell. Then rigid surfaces will be used to support the cans. Finally, three-

dimensional continuum element will be used to model the jaws of the chuck to present the efficiency of 

finite element software to calculate the reaction force – displacement diagram, the stress field and to 

investigate the different techniques to solve the contact equations. 

The initial geometry of cans can be seen in Fig. 2. The length of the can is 200 mm, the diameter is 44 

mm, the standard wall thickness is 0.36 mm at the side, 0.9 mm at the base of the cylinder. The dome at 

the base of the cylinder is R20 mm, the fillet radius is 2 mm. 
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Figure 2. The meshed geometry of the can. 

To crush the can and to investigate the reaction forces, the top edge of the shell is tied to a reference 

point (RP), at which kinematic boundary conditions are prescribed. Here, the degrees of freedom are 

fixed, except the axial displacement (direction y), which is used to deform the can. The other main option 

to tackle buckling problems is the Riks method.   

2. The simplified model  

At first, the buckling of the can is investigated using only kinematic boundary conditions and perfect 

geometry. In the first case, the highlighted area of Fig. 2 is fully pinned, the translational degrees of 

freedom are fixed, the bottom of the piece is flat. The maximum reaction force (crushing force) is 5920 

N. The deformed geometry of the ideal shell can be seen in Fig. 3 with the reaction force – axial 

displacement diagram (calculated at the reference point of the top of the can).  

 

Figure 3. The post buckling shape with the von Mises stresses and the reaction forces of the can with fully pinned 

side. 
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Figure 4. The deformed geometry of the can with a dome and the reaction forces. 

 

In the next case, the aluminium piece is constrained at its bottom against axial displacement (y), at its 

side of 35 mm height against radial displacement. Here we consider two cases, a can with flat bottom 

and with a dome, the latter can be seen in Fig. 4 with the reaction forces.  The buckling forces (or critical 

forces) were the same (5920 N). Due to the absence of resistance in the axial direction y at the side of 

the can, the critical displacements (that belong to the critical force) were greater.  

3. Contact formulation 

To capture the reaction force – displacement curve more accurately, contact zones will be introduced 

into the model. At first, the contact between the bottom of the can and the support is added, while the 

side of the can is radially fixed. Hard contact is added in the normal direction, while there is friction at 

the tangential direction with coefficients: 0.05, 0.3, 0.5. The support is modelled as a discrete rigid 

surface. 

In Abaqus, there are two main options to tackle the contact formulation of this problem. The first one is 

a surface to surface contact, where the user has to pick the master and slave surfaces using the 

appropriate meshing considerations. The other is a general contact formulation, in which we can pick 

additional options to facilitate the calculations, such as contact initialization and stabilization options. 

Both of these are robust, efficient algorithms and gave results without any major issues.  

Figures 5 and 6 show the equivalent stress distributions and the reaction forces coming from the two 

variants of geometry using different friction coefficients. The critical forces are the same, the critical 

displacements are different in case of a spherical bottom. Here we note, that in case of small friction 

coefficients, the critical zone can be the fillet at the base of the can, which causes the change in the 

reaction force curve in Figs. 5 and 6 for the case of µ=0.05. 
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Figure 5. The results of the contact problem at the bottom with initially flat base.  

 

 

Figure 6. The results of the contact problem with the bottom-dome feature. 

 

In the next phase, the jaws of the chuck is added to the model as discrete rigid surfaces, the rigid support 

below the can is removed, the flat zone of the bottom of the piece is constrained against axial 

displacement. Another step is created to investigate the effect of holding the can with two and four jaws 

(e.g. Fig. 1). The radial force that belongs to the elastic limit (exerted on the individual jaws, where the 

maximum von Mises stress is just below 120MPa) is 1.38 kN for two jaws, 1.84 kN for four jaws.  Figure 

7 shows the deformed cans with the two-jaw and four-jaw chucks and the reaction force – displacement 

diagrams in case of different friction coefficients and jaws. 
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Figure 7. The effect of the rigid jaws. 

The deformed geometry with the von Mises stress distribution caused by 4 jaws can be seen in Fig. 8. 

Here we considered the contact between the bottom of the can and the rigid support surface. As the 

friction coefficient increases, the critical displacement tends to the axial displacement value of the 

constrained can (without the bottom support of the previous case). The buckling forces were the same. 
 

 

 

  

Figure 8. The effect of the combined contact at the bottom and at the side of the can. 

Here we note, that according to the contact calculations using rigid jaws, the critical force changes with 

the increase of the radial force exerted on the jaws. When the radial force 890 N was applied, the 

maximum von Mises stress in the can was 95 MPa, the critical load 5890 N. At the elastic limit (119.9 

MPa) 1.4 kN was used and the buckling force was 5860 N. This decrease in the critical force is 

insignificant (1%), furthermore in many cases it almost disappears, when we use three-dimensional 

continuum elements, due to the deformations and the consequent contact pressure distribution caused 

by the holding system.  
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4. Implementing continuum elements 

In this section, the chuck is modelled as a three-dimensional part meshed with continuum elements. The 

shell to solid contact formulation of Abaqus is tested and compared to the previously presented 

simplified models. Figure 9 shows the geometry of the model, the can is supported by an eight-jaw chuck. 

Two different friction coefficients are investigated (𝜇 = 0.05, 0.3). Here we note, that in reality, the 

friction coefficient between the support and the can is more, than 0.3, which belongs to the aluminium-

aluminium contact. The coefficient of dry steel – aluminium is about 0.4, plastic – aluminium is more, 

than 0.4. Using different boundary conditions and mechanism to hold the can, the distribution of the 

contact pressure changes. In Fig. 9 the contact pressure (CPRESS) is illustrated when the base of the 

chuck is controlled by prescribed radial displacements. This is the reason, why in this case we had more 

negligible change in the buckling force as the radial holding load increases. It can not cause significant 

deformations (compared to rigid jaws) in the side of the can above the chuck, which is one of the reasons 

for the decreased critical force. 

  

Figure 9. The model with the three-dimensional 8-jaw chuck, different friction coefficients. 

In this case, the main area of the contact is just above the fillet of the base, moreover the maximum 

pressure value is 60 MPa, when the maximum equivalent stress is 119 MPa in the can.  

Figure 10 shows the comparison of the previous models. In the presented cases, the friction coefficient 

was 0.3, the critical loads are approximately the same, moreover the difference between the critical 

displacements are not significant. Obviously there is a noticeable increase in the critical displacement 

in the case, when the side is constrained against radial motion while there is a rigid contact between the 

bottom of the can and the rigid support surface.  
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Figure 10. The comparison of the different approaches and boundary conditions. 

This means, that the most effective way to model these thin-walled shells during the manufacturing 

process and buckling analysis is to fix the axial translation of the base of the cylinder while constrain the 

side against radial motion. Furthermore there were no significant differences between the results 

coming from different chucks with different number of jaws. 

According to experiments, the buckling load is 4% less, than the previously calculated critical force. The 

difference is the effect comes from the imperfections of the geometry.  This effect can cause issues in 

certain cases, especially for cans with greater tolerance ranges, although in our case the results coming 

from the ideal geometry were in good agreement with the experiments carried out on quality cans. The 

other difference is in the post buckling shapes, especially when pure kinematic boundary conditions are 

used. In reality, the deformed geometry is not axisymmetric, it is based on the errors, or imperfections 

in the shape of the thin cylinder.  

5. Conclusions 

This paper investigated the effect of the boundary conditions on the buckling force during the 

manufacturing process of thin-walled aluminium cans. The geometry was mapped with two-

dimensional shell element. At first, the support was modelled as a set of kinematic boundary conditions, 

then as rigid surfaces and at the end as three-dimensional solid bodies. The paper illustrates the 

efficiency of finite element method for these highly nonlinear shell problems. The commercial FE 

software Abaqus was used to calculate the reaction force – displacement diagrams, the stress 

distributions, the deformations and to tackle contact problems. According to the simulations, the 

buckling forces were approximately the same, while the critical displacements change. Based on the 

calculations, a basic combination of certain boundary conditions is proposed to increase the speed of 

the simulations without significant loss of accuracy in the buckling load. 
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