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Abstract. Artificial intelligence is becoming a powerful tool of modernity science, there is even a science consensus 

about how our society is turning to a data-driven society. Machine learning is a branch of Artificial intelligence that 

has the ability to learn from data and understand its behavers. Python programming language aiming the challenges 

of this new era is becoming one of the most popular languages for general programming and scientific computing. 

Keeping all this new era circumstances in mind, this article has as a goal to show one example of how to use one 

supervised machine learning method, Support Vector Machine, and to predict movie’s genre according to its 

description using the programming language of the moment, python. Firstly, Omdb official API was used to gather 

data about movies, then tuned Support Vector Machine model for Latent semantic indexing capable of predicting 

movies genres according to its plot was coded. The performance of the model occurred to be satisfactory considering 

the small dataset used and the occurrence of movies with hybrid genres. Testing the model with larger dataset and 

using multi-label classification models were purposed to improve the model.  
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Introduction  

Artificial intelligence is becoming one of the most powerful tools of modernity. Many mathematical 

models and methods are being used now days to support decision making in business environment. 

Machine learning is a branch of Artificial intelligence that has the ability to learn from experience, which 

means more data better the model can predict or classify unseen data. Machine learning focuses on the 

development of computer programs that can access data and use it learn for themselves, this made data 

become one of the most important assets of XXI century and machine learning a crucial competitive 

differential to the companies that apply it to its data.  

Following up with the data revolution, programming languages are in the way to develop themselves to 

support more and more Machine Learning methods. Frequently there are new releases of machine 

learning and IA libraries, most of them supported by the programming language Python, one of the most 

popular programming language of the moment, mostly because of its clean coding style, and its 

flexibility, being capable of being used in pretty much ever developing environment.  
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Keeping all this new era circumstances in mind, this article has as a purpose to show one example of 

how to use a supervised machine learning method, Support Vector Machine, and to predict movies genre 

according to its description using the programming language of the moment, python and its scientific 

library called Scikit-learn. Support Vector Machine method is frequently used to classify data with 

different labels, providing a classification prediction of what an unseen data can be.   

1. Introduction 

Artificial intelligence is becoming one of the most powerful tools of modernity. Many mathematical 

models and methods are being used now days to support decision making in business environment. 

Machine learning is a branch of Artificial intelligence that has the ability to learn from experience, which 

means more data better the model can predict or classify unseen data. Machine learning focuses on the 

development of computer programs that can access data and use it learn for themselves, this made data 

become one of the most important assets of XXI century and machine learning a crucial competitive 

differential to the companies that apply it to its data.  

Following up with the data revolution, programming languages are in the way to develop themselves to 

support more and more Machine Learning methods. Frequently there are new releases of machine 

learning and IA libraries, most of them supported by the programming language Python, one of the most 

popular programming language of the moment, mostly because of its clean coding style, and its 

flexibility, being capable of being used in pretty much ever developing environment.  

Keeping all this new era circumstances in mind, this article has as a purpose to show one example of 

how to use a supervised machine learning method, Support Vector Machine, and to predict movies genre 

according to its description using the programming language of the moment, python and its scientific 

library called Scikit-learn. Support Vector Machine method is frequently used to classify data with 

different labels, providing a classification prediction of what an unseen data can be.   

In the first part of the article there is a theoretical explanation about the Python language, Scikit-learn 

and Support Vector Machine, second part of this article regards about how to use Omdb official API to 

gather around 3,000 data about movies and with that data code a tuned Support Vector Machine model 

for Latent semantic indexing, capable of predicting movies genres according to its plot. Finally, in the 

last section a prediction on an unseen test dataset is done, measuring its performance and predictions 

capabilities. The performance of the model occurred to be satisfactory considering the small dataset 

used and the occurrence of movies with hybrid genres. Testing the model with larger dataset and using 

multi-label classification models was purposed to improve the model. 

2. Background Review 

Python programming language is becoming one of the most popular languages for general programming 

and scientific computing, mostly because of to its high-level interactive nature and its diversity of 

scientific libraries [7]. For that reason, getting knowledge about how it works and how to create 

outstanding machine learning models with that promising language is really valuable. Python has risen 

in the Stackoverflow continuously in a good pace for years. In 2019 Stackoverflow survey, Python just 
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edged out Java in overall ranking, much like it surpassed C# last year and PHP the year before. Python 

is the fastest-growing programming language of the moment [13]. 

Machine learning is a study field focused on two questions: How to construct computer systems that 

automatically improve through experience? That means more data the system has, more efficient the 

model is. The other question is what are the fundamental statistical-computational-information-

theoretic laws that govern all learning systems, including computers, humans, and organizations? Based 

on those questions all the machine learning methods were created and implemented into our lives [8]. 

Machine learning algorithms are often categorized as supervised or unsupervised, the main difference 

between those two categories are the existence or non-existence of labeled data. Supervised machine 

learning algorithms use labeled data, which means that its real categories are known, to learn from it 

and create a function that predicts categories from unseen datasets. Opposing supervised learning, 

unsupervised machine learning uses data that is neither classified nor labeled. Unsupervised learning 

draws and describe hidden structure from unlabeled data. This article dataset will consist of movie’s 

name, movie’s description and movie’s genre, therefore supervised learning algorithms should be use 

to learn from the genre labels and make assumptions about unseen movie’s descriptions predicting 

what genre categories they belong to [3][4]. 

Python has many scientific libraries and the one chosen to make this machine learning example is Scikit-

learn, one of the most used in the data science world. Scikit-learn has a rich environment to provide 

newest implementations of many well-known machine learning algorithms with an easy and direct 

syntax, indeed it is an easy-to-use interface tightly integrated with the Python language. Since it relies 

on the scientific Python ecosystem, Scikit-learn can easily be integrated into other kind of applications 

that are not build in a traditional scientific, statistical data analysis environment. Indeed, Scikit-learn is 

an answer to an increasing demand for machine learning by professionals that do not have computer 

science or statistics technical background [14]. 

Scikit-learn has a support vector machines package, the method chosen for this practical example. 

Support vector machines (SVMs) can be defined as group of supervised machine learning methods used 

for classification, regression and outlier detection. This article only covers support vector machine 

applied to classification problem (SVC). As shown in the Figure 1 there are different SVC methods 

supported by Scikit-learn, the objective of this article does not include deeply discussing the slight 

mathematical differences between the methods. This Article does a SVC model with linear kernel, SVC 

with RBF kernel and SVC with polynomial kernel and check which of those 3 fits better to the data 

collected [11]. 

The machine learning methods are very popular in other engineering field. [19-23] The data collection 

and optimization methodologies are essential approach of the modern scientific areas and data science. 

Engineers and scientist try to use more softwares (like Matlab) and special control theory methods to 

optimize measuring results and datas.[24] [25]  

 



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 6. (2021). No. 3 

DOI: 10.21791/IJEMS.2021.3.2. 

 
21 

 

Figure 1. SVC types. Source: https://scikit-learn.org/stable/modules/svm.html#svm 

3. Data Collection 

First the code needs to get all the data from the Omdb api. This can be done using the python requests 

library, which allows the user to send get requests to APIs and get its response. Therefore, the algorithm 

looks for names of movies located in the first column of the first sheet of a excel file and create a URL 

format according to Omdb api, spaces should be written as %20 according to HTML URL Encoding 

References [16]. 

The best approach to export or import data from python to Excel/CSV or from Excel/CSV to python is 

using the Pandas library. Pandas is easy-to-use data structures and data analysis tool fitting perfectly to 

these study case requirements. After sending the requests to Omdb api with the proper url, one response 

is captured. The results captured is only considered if the movie is from one of those kinds; biography, 

adventure, drama, action, crime, horror, comedy, animation, or documentary, if the movies genre is any 

different than those the entire response from that movie should be discarded and not considered. The 

genre filter is needed because there are some specific genres that are not very frequent occurring that 

the data collected could end up with genres that have few number of quantity, reducing the training set 

for those specifics genres. One point that should be mentioned is that the movie can have more than one 

genre, but for this example only its first genre is considered. 

Another data cleaning required have to do with the fact that some words from the movie’s descriptions 

do not have describing characteristics, in other words, the presence or non-presence of that word do 

not have impact in the prediction of its genre. Those kind of words are called stop words. A stop word 

can be described as a word that has the same likelihood of appearing in any kind of text and are not 



 International Journal of Engineering and Management Sciences (IJEMS) Vol. 6. (2021). No. 3 

DOI: 10.21791/IJEMS.2021.3.2. 

 
22 

relevant to the algorithm. The python library NLTK has a list of default stop words, importing this list to 

the code and removing this words from the descriptions has a relevant positive impact in the final 

results [17]. 

 Finishing the text cleaning, the paragraphs “\n”, double spacing, triple spacing, equal sign, parentheses, 

periods, commas and any digits should be removed from the text so it can contain a list a of meaning of 

words, capable of being transformed in features that describes its genre, replace function of python is 

good approach to remove the undesired texts, but for the case of the digits replacement, regular 

expression replacement seems to be the best way of reaching the result desired. Regular Expression are 

a very powerful way of processing text while looking for recurring patterns, instead of doing 9 

replacements with just one regex replacement it is possible to remove all the digits from the text [5]. 

The JSON file returned by the API should be read and parse to a Python dictionary, that way it becomes 

possible to manipulate, filter and clean the data in any way it is required to do so. JSON files and Python 

dictionaries have similar structures, for that reason python has another library, simply called “json”, 

which deals with this data transformation, making the JSON string resulted from the API response 

become a Python dictionary. Finally, the results containing the movie’s description and its genre (only 

movies with the genres mentioned before) should be sent to a CSV file. Pandas is again useful, since it 

has a great way to store data frames. Calling the method “DataFrame” of Pandas, it becomes possible to 

create well-structured tables and later with the method “to_csv” of the “DataFrame” object created, the 

data can be exported to a csv file. The entire process is shown in the Algorithm 1. 

Algorithm 1: 

import pandas as pd  

import requests 

import json 

import re 

import pandas as pd 

import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

def Generate_list(path): # receives a path of a excel that has a column of movies name and returns a python 
list 

    df=pd.read_excel(path) 

    listOfMovies=df.iloc[:,0].tolist() 

    return listOfMovies 

# initiate empty lists and list of genres movies types that should be considered 

typesIncluded=["Biography","Adventure","Drama","Action","Crime","Horror","Comedy","Animation","Doc
umentary"] 

docs=[] 

genreList=[] 

MoviesName=[] 
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stop=set(stopwords.words('english')) # get a set of stop words 

Movies=Generate_list(path="C:\\Users\\CavalcantiJ\\Desktop\\IA\\moviesNames.xlsx") # generate list 
from excel file 

for movie in Movies: # loop thru each movie 

    name=str(movie).replace(" ","%20") #create omdb url replacing spaces for %20 

    url= "http://www.omdbapi.com/?t="+name+"&plot=full&apikey=40a283e" #create omdb url for api 
use 

    response=requests.get(url) #send get request to omdb API 

    json_data = json.loads(response.text) #load response to python dictionary 

    # try to see if the response of the API was successful 

    try: 

        #check if first genre of movie is in the list of types included and check if there is a movie description 
available 

        if json_data["Genre"].split(",")[0] in typesIncluded and json_data["Plot"]!="N/A": 

            #get the movie description 

            Content=json_data["Plot"] 

            #remove line breaks “\n”, remove parenthesis and remove equal sign from description 

            Content=Content.replace("\n"," ").replace("(","").replace(")","").replace("=","") 

            #remove periods and commas description 

            Content=Content.replace(".","").replace(",","") 

            Content=re.sub(r'[0-9]+','',Content) #remove all digits from description 

            genreList.append(json_data["Genre"].split(",")[0]) # get the movie’s first genre and append to list 

            MoviesName.append(movie) get the movie’s name and append to list 

            for word in stop: 

                Content=Content.replace(" " +word+" "," ") #remove stop words 

            Content=Content.replace("  "," ").replace("   "," ") #remove double spacing and triple spacing from 
description 

            docs.append(Content) #append the cleaned movie’s description to a list of descriptions called docs 

    #print any url that failed to give an response from the omdb api 

    except: 

        print(url) 

        print("erro") 

#create a DataFrame object containing movie’s name, genre and descrption 

df = pd.DataFrame({'name': MoviesName, "genre":genreList, "content":docs}) 

#export DataFrame created to a csv file 

df.to_csv(r'C:\\Users\\CavalcantiJ\\Desktop\\IA\\data.csv') 

The results of the algorithm above are all stored in a csv that contains movies names, genres, and 

description without stop words and without special chars that should not be considered for the 
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algorithm training, as mentioned before. In other words, the csv has a cleaned dataset ready to be 

analyzed, the next step is to create the machine learning model that receives this cleaned dataset and 

returns an artificial intelligence capable of predicting movie’s genre from any description provided. 

4. Creating the Model 

The model creation had as the first step importing all the data generated from the previous step to 

Python. Again this can be done with Pandas, with the command “read_csv” receiving as parameter the 

path to the csv that was created by the preceding algorithm. After reading the csv file, for easy use and 

understanding the data frame columns are transformed into python lists, using the property “loc” of the 

data frame, to localize each column that should be extracted chained by the method “tolist” which 

transform the column selected into one python list. 

Frequency-inverse document frequency (TF-IDF) is a statistics method which determines weights for 

each word in each document that in this case are movie’s descriptions. Natural language processing 

(NLP) and text mining often make use of TF-IDFs to determine something similar to a DNA of the text 

analyzed. In other words, the method measures the importance of the words in the provided text and 

the importance of the word increases according to the number of times it appears in the document [2]. 

In python the library Scikit-learn has a function called “TfidfVectorizer” which can transform a list of 

text into a frequency-inverse document frequency, making it a great tool for use in this article example. 

“ngram_range” parameter of “TfidfVectorizer” determines how many word’s combinations should be 

taken into consideration, in these example, “ngram_range=(1,2)” Is used to allow the code to consider 

not just words but pairs of words, hence if there are words that appear together in the text frequently, 

not just the words individually will be taken into account but also the pairs will be part of the text DNA. 

It is good to mention that “TfidfVectorizer” have a parameter called “stopwords” which a list of stop 

words could be assigned resulting in replacements without the need of a manual replacement like 

shown before, but for better understanding of how the model works, the replacements were done 

manually in this article [12]. 

“TfidfVectorizer” returns a sparse matrix as result, sparse matrices refer to the matrices in which most 

entries of it are zero, that’s the case since many of the words in one movie description won’t be in the 

others descriptions, generating a frequency matrix with many zeros values representing those words 

that are in some of the descriptions but not in the one it refers to. Sparse matrix is more easily 

compressed, therefore it requires less storage resulting in consequence of that a desirable reduce in 

computational cost [9].  

After creating a sparse matrix with “TfidfVectorizer”, the data should be split into test and training 

datasets. Machine learning datasets often are split into training data and testing data, the training 

dataset is used for fitting the data to the model, in other words the algorithm creates a function to predict 

labels of new unknown data. In contrast, the test dataset is used to measure the quality of the machine 

learning model created by using it as an unknown test dataset and checking the capacity of the model to 

properly predict correct labels. As the test dataset was not fit to the model, testing the fitted model with 

it can provide an unbiased analysis of how good the fitted model is [1]. 
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Splitting the data in python can be done with Scikit-learn function called “train_test_split”. The 

parameters “test_size” and “stratify” of “train_test_split” should be set to 0.2 and “genre” respectively, 

the first one determines that the size of the testing data is equal to 20 percent of the total dataset and 

the training data 80 percent consequently. On the other hand, stratify is equal to “genre”, which is a list 

containing all the genres extracted from the csv file. This stratify configuration makes the data split in a 

stratified fashion proportionally to the original dataset, that way both test and train datasets will be an 

exact reduced picture of the main dataset. 

In scikit-learn, model optimization can be done in two ways, using “GridSearchCV” or 

“RandomizedSearchCV”. Both cases take as input an estimator and hyper-parameter settings to search 

through. The hyper-parameters must be optimized by cross-validated search over hyper-parameter 

settings. “GridSearchCV” do an exhaustive search over specified parameter values for an estimator 

looking for the best combination of parameters for the model. “RandomizedSearchCV” is a smarter 

algorithm that avoids the combinatorial explosion that leads to timeout problems. It gets a random fixed 

number sample from the parameter distributions chosen and optimizes then with cross validation 

[6][12]. To keep the model simpler, “GridSearchCV” was used with a list of possible values of each hyper-

parameter of the SVC, C and gammas parameter can be  0.001, 0.01, 0.1, 1, 10 or 100, in other hand, 

kernel can be of 3 different types, 'linear', 'rbf' or 'poly'. 

“TruncatedSVD” performs linear dimensionality reduction by means of truncated singular value 

decomposition (SVD) and it works with sparse matrices efficiently. If data has a large number of 

features, that’s mostly what happens in texts analyses since there are many words in each text to be 

analyzed, it can happen that some important feature loses it power being diluted in a large quantity of 

meaningless features. Hence, “TruncatedSVD” reduces the data into a subset of features that are the 

most relevant, which results in an improvement to the model’s accuracy [18] [10]. Scikit-learn’s 

“TruncatedSVD” has one parameter called “n_components”, that determines the size of the reduction, in 

other words, it tells the dimensionality of the output data, which contains the features that will be 

considered for the model fitting. For probabilistic latent semantic indexing a value of 100 is 

recommended [15] 

All the steps mentioned before should be executed in the right order, going thru a pipeline of steps, this 

can be accomplished creating a “make_pipeline” object from Scikit-learn library, followed by its fit, and 

predict methods on x, y train dataset and x test dataset respectively. Finally, after fitting the model and 

predicting with x test dataset, the model’s performance was measured using the Scikit-learn 

classification report to print a text report with the main classification metrics. All the steps mentioned 

in this section are in the Algorithm 2. 

Algorithm 2: 

from sklearn.feature_extraction.text import TfidfVectorizer  

from sklearn.pipeline import make_pipeline 

from sklearn.model_selection import train_test_split 

from sklearn.decomposition import TruncatedSVD 

import pandas as pd 

from sklearn.model_selection import GridSearchCV 
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from sklearn.svm import SVC 

from sklearn.metrics import classification_report 

df=pd.read_csv(r'C:\\Users\\CavalcantiJ\\Desktop\\IA\\data.csv') #read the data previously generated 

names=df.loc[“name”].tolist() #transform the DataFrame column “name” into a python list 

genre= df.loc[“genre”].tolist() #transform the DataFrame column “genre” into a python list 

content=df.loc[“content”].tolist() #transform the DataFrame column “content” into a python list 

def generate_sparse_matrix(docs): #function to generate sparse matrix using TfidfVectorizer 

    tfidf = TfidfVectorizer(ngram_range=(1,2))  

    csr_mat = tfidf.fit_transform(docs) 

    return csr_mat 

sparse_matrix = generate_sparse_matrix(content) # generate sparse matrix using function created 

X_train, X_test, y_train, y_test = train_test_split(sparse_matrix, genre, test_size=0.2, stratify=genre) #split 
data 

#create GridSearchCV object with set of possible parameters 

Cs = [0.001, 0.01, 0.1, 1, 10, 100] 

gammas = [0.001, 0.01, 0.1, 1, 10,100] 

kernel = ['linear','rbf','poly'] 

param_grid = {'C': Cs, 'gamma': gammas,'kernel': kernel} 

Grids = GridSearchCV(SVC(), param_grid=param_grid) 

#create TruncatedSVD object with n_components=100 

svd=TruncatedSVD(n_components=100) 

#create a pipeline that receives the model steps: TruncatedSVD and GridSearchCV with a SVC 

pipeline=make_pipeline(svd,Grids) 

pipeline.fit(X_train, y_train) #fit the model 

genreResult = pipeline.predict(X_test) #predict the model 

print(classification_report(genreResult, y_test )) #print classification report 

5. Results 

The first result of the classification report is shown in the Table 1. It can be observed that Adventure, 

crime and horror genres could not be predicted properly, in the other hand, documentaries were easy 

for the model to predict, this effect happened because most of documentaries have only one genre and 

also have words that are exclusively used for its descriptions, such as the word “documentary” that 

appears in almost all descriptions, same happens with biographies. The bad performance for adventure, 

crime and horror happened because most of the movies of this kind have multi-genres, they have 

common words with other movies descriptions causing confusion to the algorithm, using a multi-label 

classification model could improve performance of this genders significantly, as well as adding more 

learning data before fitting the model. 
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Genre Precision Recall f1-score Support 

Action 0.55 0.44 0.49 101 

Adventure 0.04 0.20 0.07 10 

Animation 0.26 0.52 0.35 25 

Biography 0.66 0.40 0.49 111 

Comedy 0.56 0.39 0.46 103 

Crime 0.07 1.00 0.13 3 

Documentary 0.70 0.64 0.67 90 

Drama 0.41 0.29 0.34 100 

Horror 0.15 0.50 0.23 14 

Table 1. Classification report stratified 

While measuring the performance of the model globally, as it is shown in the Table 2, the macro and 

weighted average performance has relatively satisfactory results, considering the lack of data and the 

inconsideration of the existence of the multi-genres movies. Global precision was 0.54, recall 0.43, f1-

score 0.46 and support 557. 

Metric Precision Recall f1-score Support 

macro avg 0.38 0.49 0.36 557 

weighted avg 0.54 0.43 0.46 557 

Table 2. Classification report 

6. Conclusion 

There are some premises that should be taken into consideration while analyzing the results, firstly a 

machine learning model has as one of its definition, a model that learns when more data is applied to 

the model, for this article the quantity of around 3,000 movie’s data was used to fit the model. This is 

relatively a small quantity when talking about machine learning and data science, considering this, it is 

understandable that the model does not reach outstanding levels of accuracy. Moreover, as the genres 

of the movies can be multiple, and the model created can only predict one genre for each movie, it is 

expected that the learning does not go as smooth as it should, hence reducing the correctness of the 

model’s predictions. 

For further studies it is recommended that more tests with different quantities of data are applied to the 

model, that way it is possible to know how is the learning curve of the model and what is the quantity of 

data that gives the best trade off regarding running time and accuracy. It is also recommended that 

Multi-label classification could be tested that way not just the first movies genre would be taken into 

account by the algorithm.  
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